
6.S894 
Accelerated Computing 

Lecture 2: Throughput 
Processors

Jonathan Ragan-Kelley

September 11, 2025



What is a processor?
a programmable computer 
that runs a sequence of 
instructions over time 
including control flow, 
computation & state updates



What is a processor?

🥸
Why yes, 
I am still 

basically a 
PDP-11

1970s 2020s



Slides inspired by Kayvon Fatahalian

A simple processor

1. Instr. fetch 

2. Decode 

3. Operand 
fetch 

4. Execute 

5. Write back

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5
...

Processor Program

mul r3, r3, r4

an interpreter for 
instructions!
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A simple processor

Processor Program

Control 
(Fetch & Decode)

Execution 
(ALU)

Program State 
(Registers)

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5
...

mul r3, r3, r4

an interpreter for 
instructions!
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Optimization 1: Increase the clock speed

Processor

Control 
(Fetch & Decode)

Execution 
(ALU)

Program State 
(Registers)

Higher voltage 
⮑ power grows with v2

Deeper pipelining 
⮑ lower average IPC

Faster transistors 
⮑ higher leakage
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Optimization 2:

Processor

Control 
(Fetch & Decode)

Execution 
(ALU)

Program State 
(Registers)

Execute multiple instructions 
per cycle (superscalar)

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5
...

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4

addi r2, r2, 4
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Optimization 2:

Processor

Fetch & Decode 2

Exec 1

Program State 
(Registers)

Execute multiple instructions 
per cycle (superscalar)

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5
...

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4

addi r2, r2, 4

Out-of-Order Control

Fetch & Decode 1

Exec 2
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Optimization 3:

Processor

Fetch & Decode 2

Exec 1

Program State 
(Registers)

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5
...

Out-of-Order Control

Fetch & Decode 1

Exec 2

blt r2, $400, LOOP

Avoid stalls through ILP

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]

& speculation

addi r2, r2, 4
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Optimization 3:

Processor

Fetch & Decode 2

Exec 1

Program State 
(Registers)

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5
...

Out-of-Order Control

Fetch & Decode 1

Exec 2

blt r2, $400, LOOP

Branch Predictor ld r3, mem[r0+r2]
ld r4, mem[r1+r2]

Cache 
Memory

Prefetcher

Avoid stalls through ILP
& speculation

addi r2, r2, 4



This makes sense when you have only one

Processor

processor



This makes sense when you have only one

Processor

processor

(to scale)



Silicon Chip

The reality today: At the same time:

We most need 
performance when 
processing lost of stuff

⮑ abundant data-
parallelism



A different 
view of performance:

throughput-oriented

Optimize aggregate rate 
of processing many items



Three things 
drive throughput:

Amount of work 
to be done1
Amount of resources 
to be applied2
Efficiency of applying 
them to useful work3

(silicon, energy)

Goal: 
optimize this!

Constraints set 
by application, 
Si process node}



What to do with twice the silicon?

State

Control

Exec Exec

Cache



What to do with twice the silicon?

State

Control

Exec Exec

Cache

Exec

Another cache!

State

Control

Exec Exec

Cache
State

Control

Exec Exec

Cache

= 
equal 
area

Double the 
performance 
of one core

≪2⨉ the 
performance of 

smaller core



1⨉

4⨉

1⨉

Diminishing returns to 
scaling single-core performance
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If we want to optimize throughput, 
is there a better way to scale 
performance?
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Idea 1: remove hardware to optimize 
 single-thread performance

Program State

Fetch & Decode

Exec

Huge Caches

Out-of-Order Control

Fancy Branch Predictor

Memory Prefetcher
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Idea 1: remove hardware to optimize 
 single-thread performance

Program State

Fetch & Decode

Exec …
Program State

Fetch & Decode

Exec

Invest savings in parallelism



for (int i = 0; i < N; ++i)	
  for (int k = 0; k < N; ++k)

for (int j = 0; j < N; ++j)	
  C[i*N + j] += A[i*N + k] * B[k*N + j];



for (int j = 0; j < N; ++j)	
  C[i*N + j] += A[i*N + k] * B[k*N + j];



for all (int j = 0; j < N; ++j)	
  C[i*N + j] += A[i*N + k] * B[k*N + j];

Program State

Fetch & Decode

Exec

Program State

Fetch & Decode

Exec

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5
...

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5
...

Fetch & Decode
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Idea 2: amortize control overhead with 
             SIMD execution

Fetch & Decode

ALU 
1

ALU 
2

ALU 
3

ALU 
4

State 
1

State 
2

State 
3

State 
4

Shared State

Program State

Fetch & Decode

ALU

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5
...

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5
...
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Idea 2: amortize control overhead with 
             SIMD execution

Fetch & Decode

ALU 
1

ALU 
2

ALU 
3

ALU 
4

State 
1

State 
2

State 
3

State 
4

Shared State

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5
...

SIMD can be 
explicit in ISA 
or implicit in 
hardware

Intel AVX, 
ARM NEON, 
etc.

many GPUs
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SIMD execution requires coherent control

Fetch & Decode

ALU 
13

ALU 
14

ALU 
15

ALU 
16

Shared State

ALU 
9

ALU 
10

ALU 
11

ALU 
12

ALU 
5

ALU 
6

ALU 
7

ALU 
8

ALU 
1

ALU 
2

ALU 
3

ALU 
4

State 
13

State 
14

State 
15

State 
16

State 
9

State 
10

State 
11

State 
12

State 
5

State 
6

State 
7

State 
8

State 
1

State 
2

State 
3

State 
4

…

…
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SIMD execution requires coherent control
ALU 1 ALU 2 . . . ALU 8. . . 

Time (clocks) 2 . . . 1 . . . 8

if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional	
        code>

y = pow(x, exp);	

y *= Ks;	

refl = y + Ka;  

x = 0; 	

refl = Ka;  

T T T F FF F F

Not all ALUs do useful work every cycle! 
Worst case: 1/n peak performance



Diminishing returns, 
scale further with multicore

Fetch & Decode

ALU 
1

ALU 
2

ALU 
3

ALU 
4

State 
1

State 
2

State 
3

State 
4

Shared State

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5
...

Fetch & Decode

ALU 
1

ALU 
2

ALU 
3

ALU 
4

State 
1

State 
2

State 
3

State 
4

Shared State

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5
...

Typical SIMD width: 8 ~ 64
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How to deal with latency without stalling

Program State

Fetch & Decode

Exec

Huge Caches

Out-of-Order Control

Fancy Branch Predictor

Memory Prefetcher
Opportunity: 
exploit parallelism 
to hide latency



Idea 3: Interleave parallel tasks to hide latency
Time (clocks) Items 1 … 8

 

Task 1

Stall

Runnable

 

Items 9 … 16

Task 2
 

Items 17 … 24

Task 3
 

Items 25 … 32

Task 4

Stall

Stall

Stall

Slide adapted from Kayvon Fatahalian



Idea 3: Interleave parallel tasks to hide latency
Time (clocks)
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Fetch & Decode

ALU 
1

ALU 
2

ALU 
3

ALU 
4

ALU 
5

ALU 
6

ALU 
7

ALU 
8

State State State State

Shared State

State State State State

Task 1

Task 2

Task 3

Task 4

Task 1



Interleaving requires more state storage
Time (clocks)
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Fetch & Decode

ALU 
1

ALU 
2

ALU 
3

ALU 
4

ALU 
5

ALU 
6

ALU 
7

ALU 
8

Task 1

Task 2

Task 3

Task 4

Task 1

1 2

3 4

Multithreading 
requires extra 
state storage 
for idle threads



Interleaving requires more state storage

Slide adapted from Kayvon Fatahalian

Fetch & Decode

ALU 
1

ALU 
2

ALU 
3

ALU 
4

ALU 
5

ALU 
6

ALU 
7

ALU 
8

DRAM latency: 
100s of cycles

AMD/Intel 
Hyperthreadng: 

2 threads

Thread Context StorageNVIDIA H100: 
16k 32-bit words 

per warp scheduler 
(core)⮑ 32MB 

per GPU



Tradeoff: per-thread state vs. latency hiding
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Fetch & Decode

ALU 
1

ALU 
2

ALU 
3

ALU 
4

ALU 
5

ALU 
6

ALU 
7

ALU 
8

Few, large contexts: 
limited latency hiding



Tradeoff: per-thread state vs. latency hiding
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Fetch & Decode

ALU 
1

ALU 
2

ALU 
3

ALU 
4

ALU 
5

ALU 
6

ALU 
7

ALU 
8

Many, small contexts: 
maximal latency hiding



A throughput-oriented processor 
exploits abundant parallelism for efficiency

Scale performance with multicore, 
not instruction-level parallelism

Amortize control overhead 
with SIMD execution

Hide latency with concurrent 
threads, not speculation3

2
1



Idea 4: amortize instruction overheads with 
more complex instructions

Reg ALU RegPrimitive op: 
(“RISC”)

Complex op: 
(“CISC++”)

Reg ALU RegALU ALU…

e.g., AES, video encode/decode, 
DSP, texture filtering, …

“ASIC-in-an-
Instruction”

and especially 
matrix multiply!



🥸

Why yes, 
I am still 

basically a 
PDP-11

You will rewrite 
all your code in 

CUDA . . . 
and pray I don’t 
alter the deal 
any further!



How do these ideas appear 
in real hardware?



Our GPU: NVIDIA RTX 4000 Ada
(AD104 chip)



Ampere GPU Architecture In-Depth 

 

NVIDIA Ampere GA102 GPU Architecture 12 

 

 
Figure 3. GA10x Streaming Multiprocessor (SM) 

2x FP32 Throughput 
In the Turing generation, each of the four SM processing blocks (also called partitions) had two 
primary datapaths, but only one of the two could process FP32 operations. The other datapath 
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling 
the peak processing rate for FP32 operations. One datapath in each partition consists of 16 

One “core” of our GPU

32 x 32-bit Exec. Units 
(ALUs / vector lanes) 

512 x 32 x 32-bit regs 

1 warp instruction / clock 
(32 lanes) 

Up to 12 live threads 
(independent warps)

(“warp scheduler”)
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Figure 3. GA10x Streaming Multiprocessor (SM) 

2x FP32 Throughput 
In the Turing generation, each of the four SM processing blocks (also called partitions) had two 
primary datapaths, but only one of the two could process FP32 operations. The other datapath 
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling 
the peak processing rate for FP32 operations. One datapath in each partition consists of 16 

One “SM” is a cluster 
of 4 warp schedulers
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L2 Cache (48 MB)

Our whole GPU
48 SMs 
x 4 = 192 cores 
x32 = 6144 exec. units 
@ 2.175 GHz 
= 26.7 TFLOPS 
 
192x12 = 2,304 threads 
 
96k 1024-bit registers 
= 12 MB 
48 MB L2 cache



Our CPU: AMD Ryzen 7 7700



One core of our CPU 
(AMD Zen 4)
Huge, complex control 
logic (6-wide, OoO, …) 

Two 256-bit vector ALUs 
= 16 x 32-bit exec. units 

192 vector registers 

1 MB cache 

2 “hyperthreads”
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x 16 = 128 exec units 
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40 MB total L2+L3



48 SMs 
x 4 = 192 cores 
x32 = 6144 exec. units 
@ 2.175 GHz 
= 26.7 TFLOPS 
 
192x12 = 2,304 threads 
 
96k 1024-bit registers 
= 12 MB 
48 MB L2 cache

8 “Zen 4” cores 
x 16 = 128 exec units 
@ 3.8 ~ 5.3 GHz 
= 0.97 ~ 1.4 TFLOPS 
 
8 x 2 = 16 threads 
 
1.5k 512-bit registers 
= 24 KB 
40 MB total L2+L3

Our CPU Our GPU



~200 mm2 

/ 192 cores 
= 1.05 mm2 / core 
 
8x smaller

70 mm2 
/ 8 cores 
= 8.75 mm2  
 
6-7x faster 
on Mandelbrot

Our CPU Our GPU 294 mm2 
(full die)

70 mm2 
(CCD only)



A throughput processor 
is still a processor!
(or actually, many of them)

But we need to change our 
programs to use it efficiently
expose explicit parallelism 
within & across instruction streams


