6.894 Accelerated Computing Lecture 2: Throughput Processors

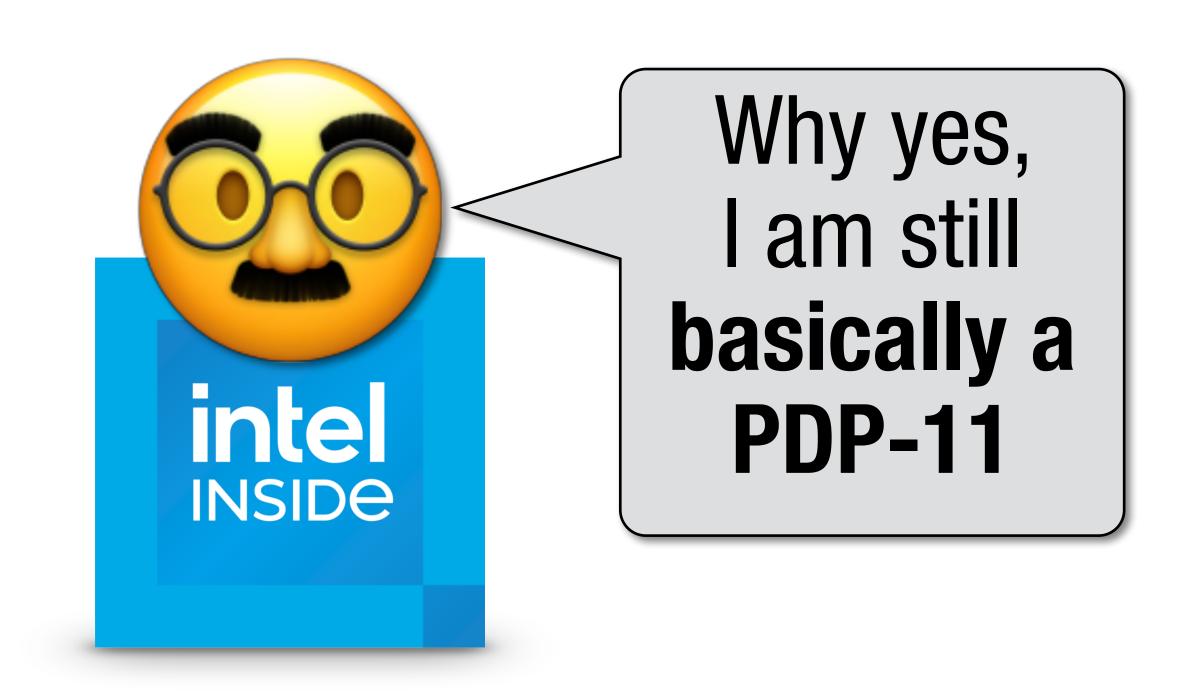
Jonathan Ragan-Kelley Wiii

What is a processor? a programmable computer that runs a sequence of instructions over time

including control flow, computation & state updates

What is a processor?

1970s



2020s

A simple processor an interpreter for

- 1. Instr. fetch
- 2. Decode
- 3. Operand fetch
- 4. Execute
- 5. Write back

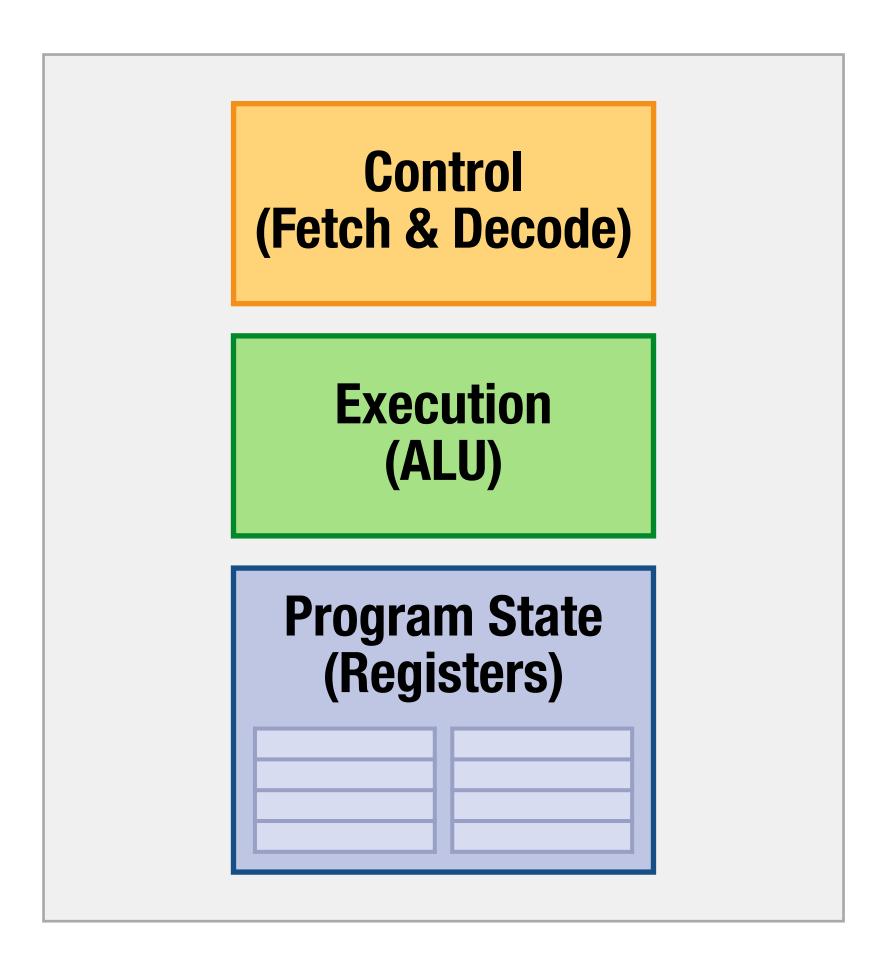
Processor

instructions!

ld	r3, mem[r0+r2]
ld	r4, mem[r1+r2]
mul	r3, r3, r4
add	r5, r5, r3
addi	r2, r2, 4
blt	r2, \$400, LOOP
st	addr[r6], r5
• • •	

Program

A simple processor an interpreter for



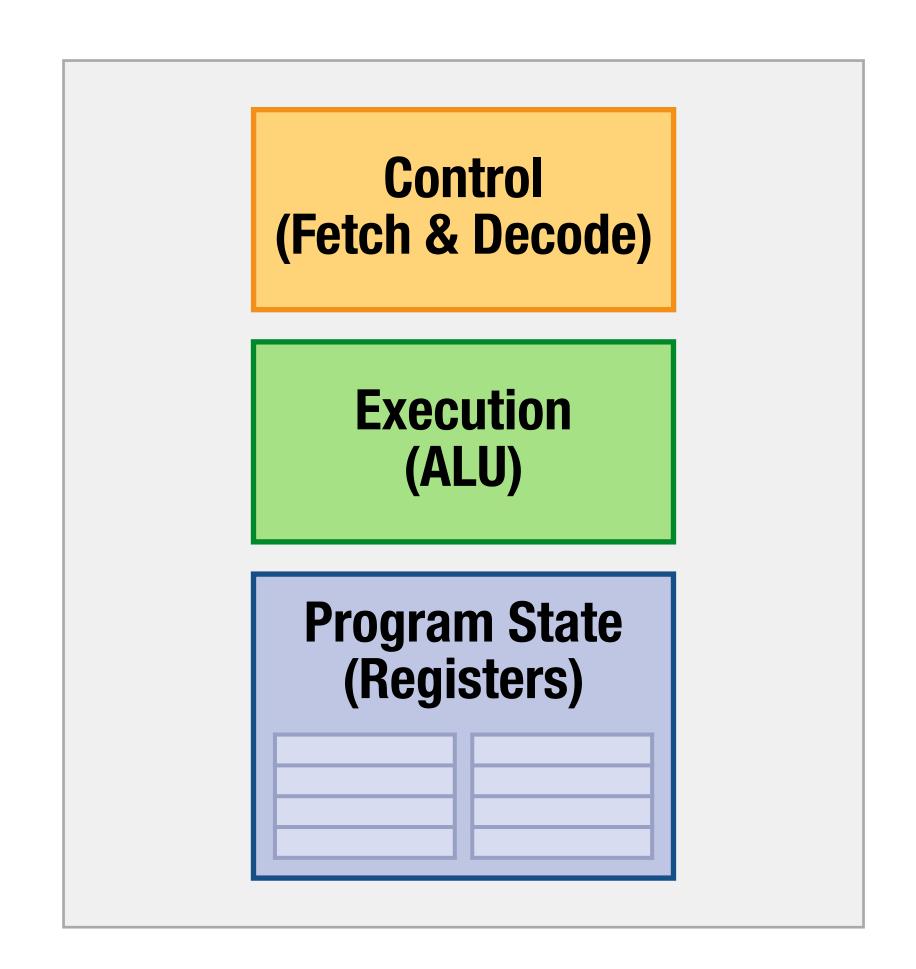
Processor

instructions!

ld	r3, mem[r0+r2]
ld	r4, mem[r1+r2]
mul	r3, r3, r4
add	r5, r5, r3
addi	r2, r2, 4
blt	r2, \$400, LOOP
st	addr[r6], r5
• • •	

Program

Optimization 1: Increase the clock speed



Processor

Higher voltage

> power grows with v²

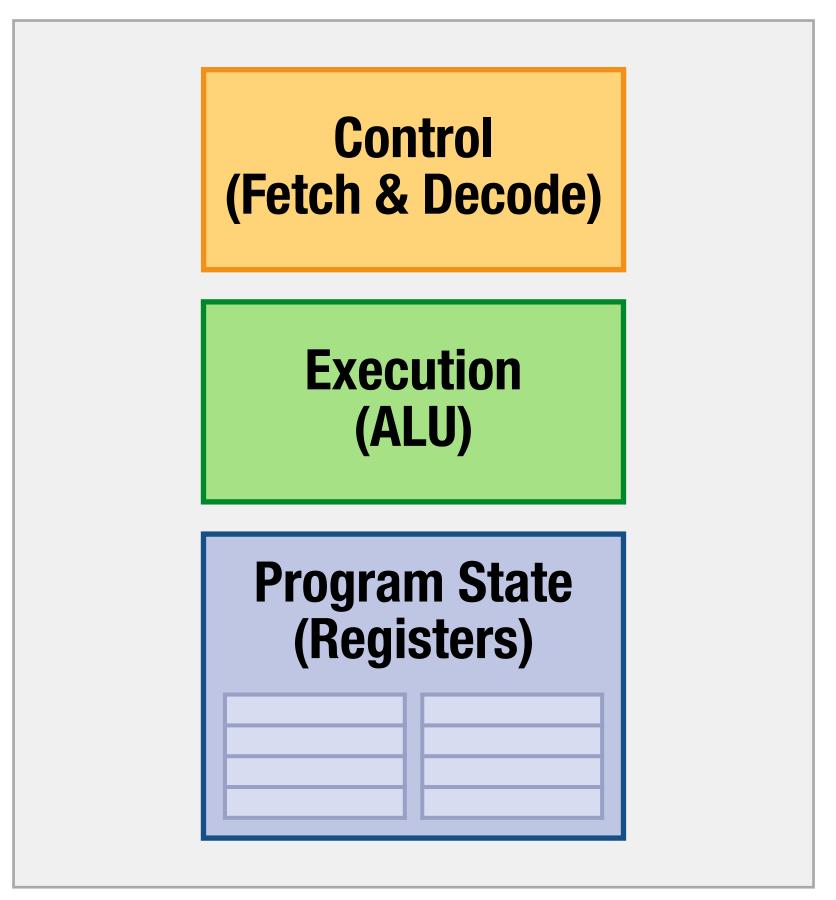
Faster transistors

higher leakage

Deeper pipelining

└→ lower average IPC

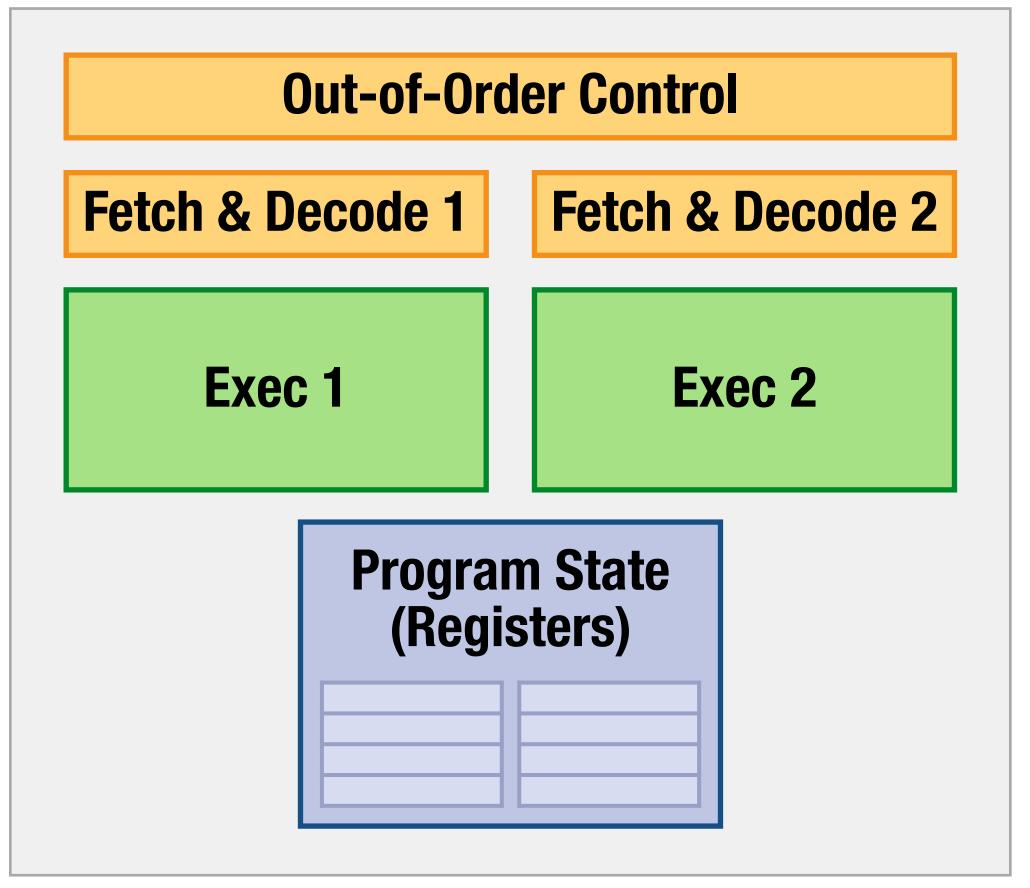
Optimization 2: Execute multiple instructions per cycle (superscalar)



ld	r3, mem[r0+r2]
ld	r4, mem[r1+r2]
mul	r3, r3, r4
add	r5, r5, r3
addi	r2, r2, 4
blt	r2, \$400, LOOP
st	addr[r6], r5
• • •	

Processor

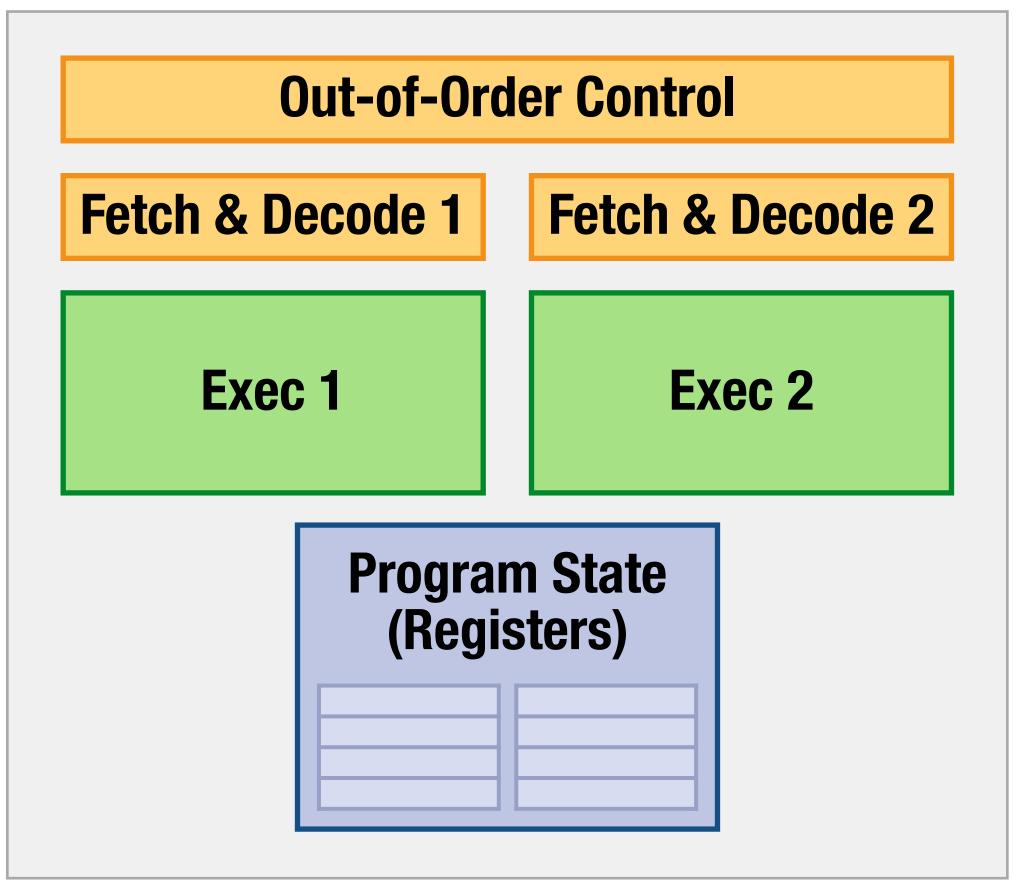
Optimization 2: Execute **multiple** instructions per cycle (**superscalar**)



ld	r3, mem[r0+r2]
1d	r4, mem[r1+r2]
mul	r3, r3, r4
add	r5, r5, r3
addi	r2, r2, 4
blt	r2, \$400, LOOP
st	addr[r6], r5
• • •	

Processor

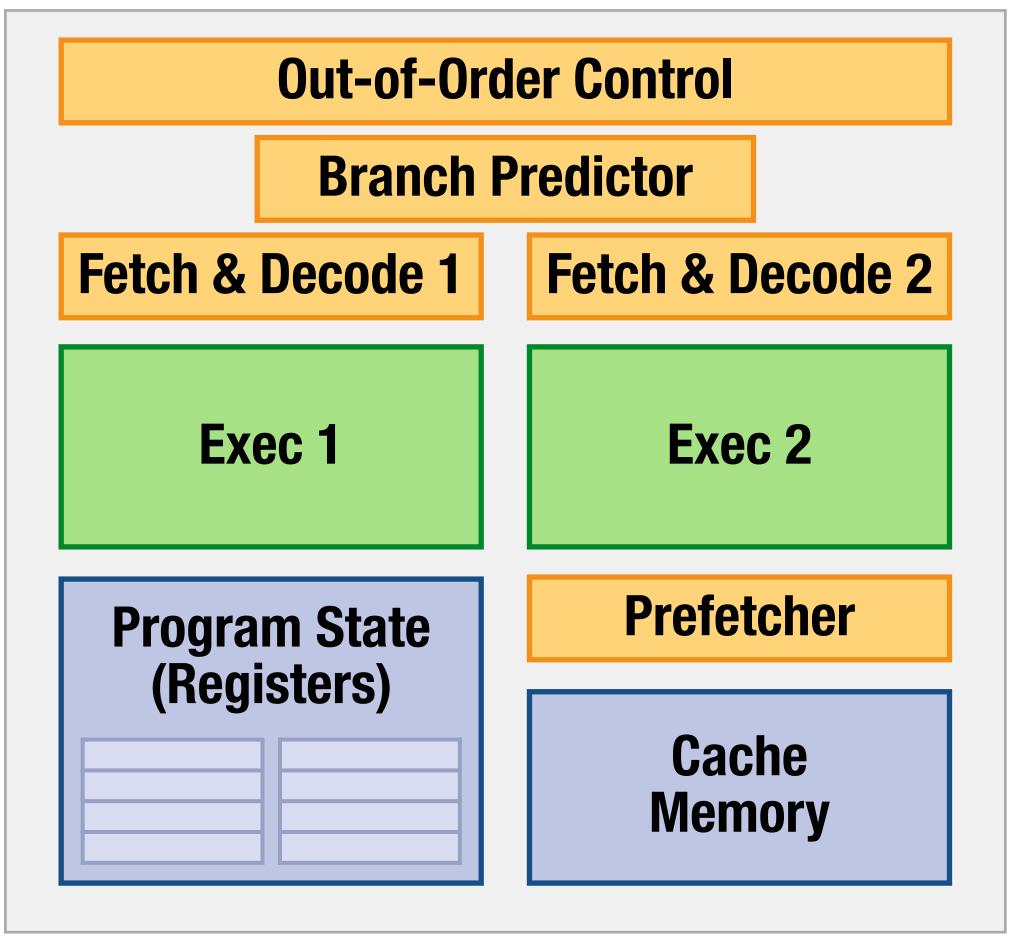
Optimization 3: Avoid stalls through ILP & speculation



ld	r3, mem[r0+r2]
ld	r4, mem[r1+r2]
mul	r3, r3, r4
add	r5, r5, r3
addi	r2, r2, 4
blt	r2, \$400, LOOP
st	addr[r6], r5
• • •	

Processor

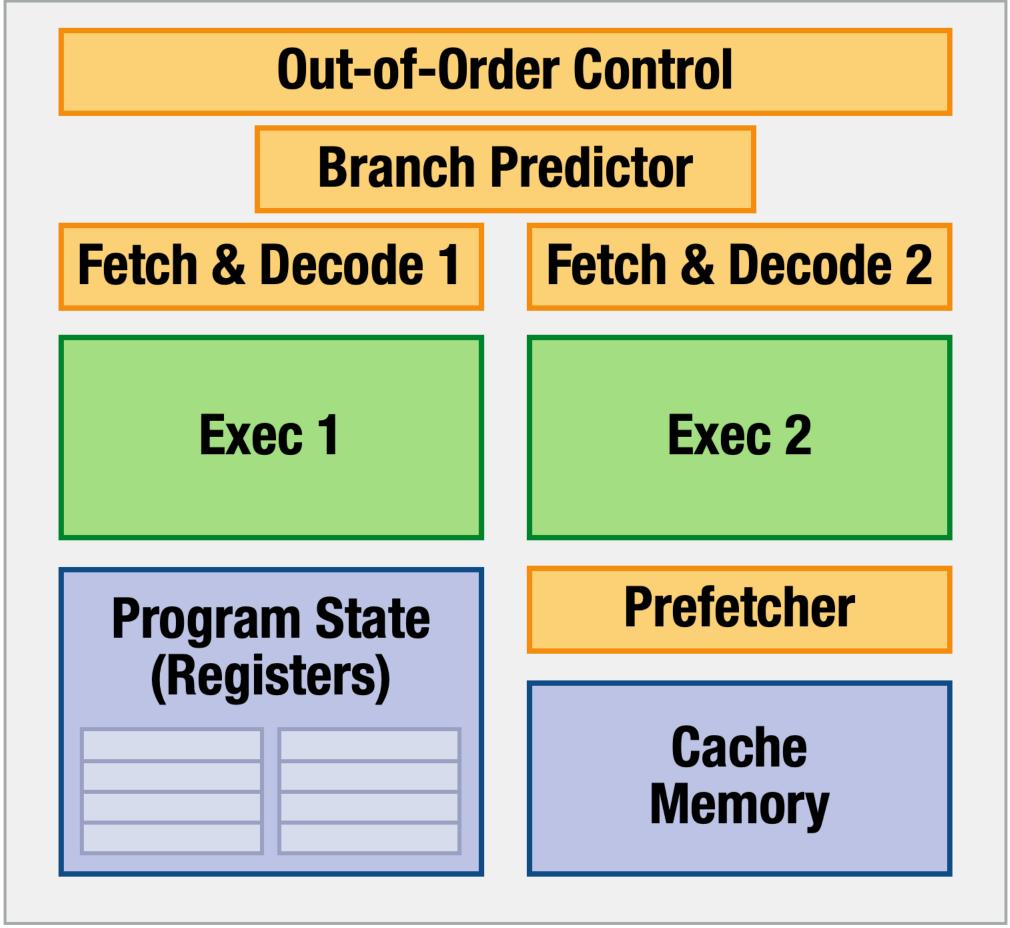
Optimization 3: Avoid stalls through ILP & speculation



ld	r3, mem[r0+r2]
ld	r4, mem[r1+r2]
mul	r3, r3, r4
add	r5, r5, r3
addi	r2, r2, 4
blt	r2, \$400, LOOP
st	addr[r6], r5
• • •	

Processor

This makes sense when you have only one processor



Processor

This makes sense when you have only one processor

Processor (to scale)

The reality today:

Silicon Chip

At the same time:

We most need performance when processing lost of stuff

> abundant dataparallelism

A throughput-oriented view of performance:

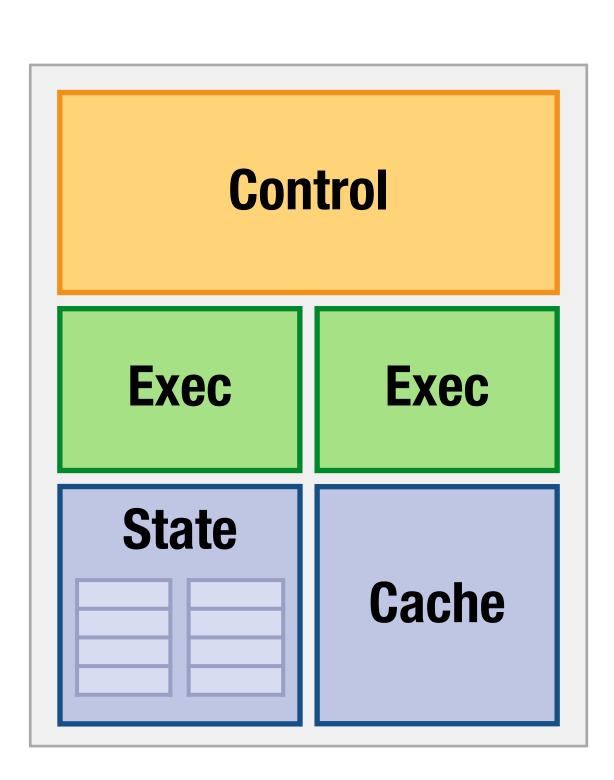
Optimize aggregate rate of processing many items

Three things drive throughput:

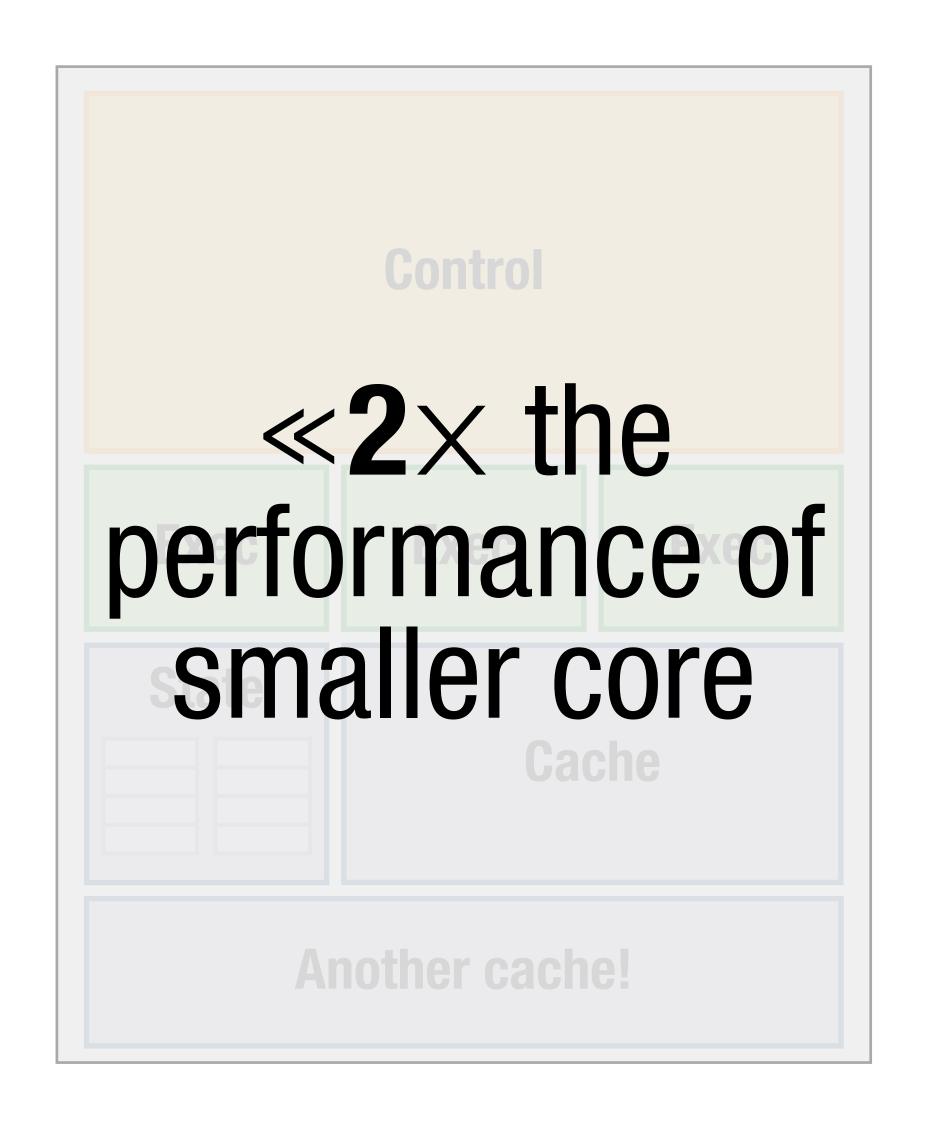
- Amount of work to be done
- Amount of resources to be applied (silicon, energy)
- Efficiency of applying them to useful work

Gonstraints set by application, Si process node

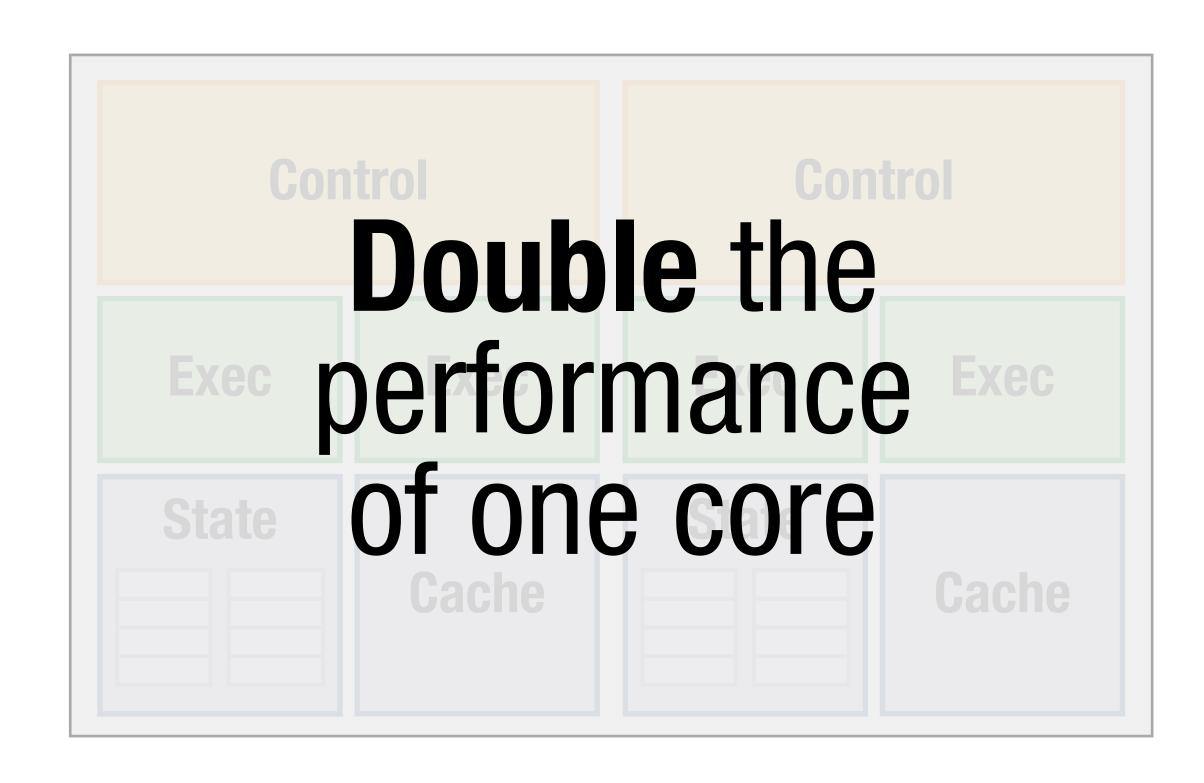
What to do with twice the silicon?



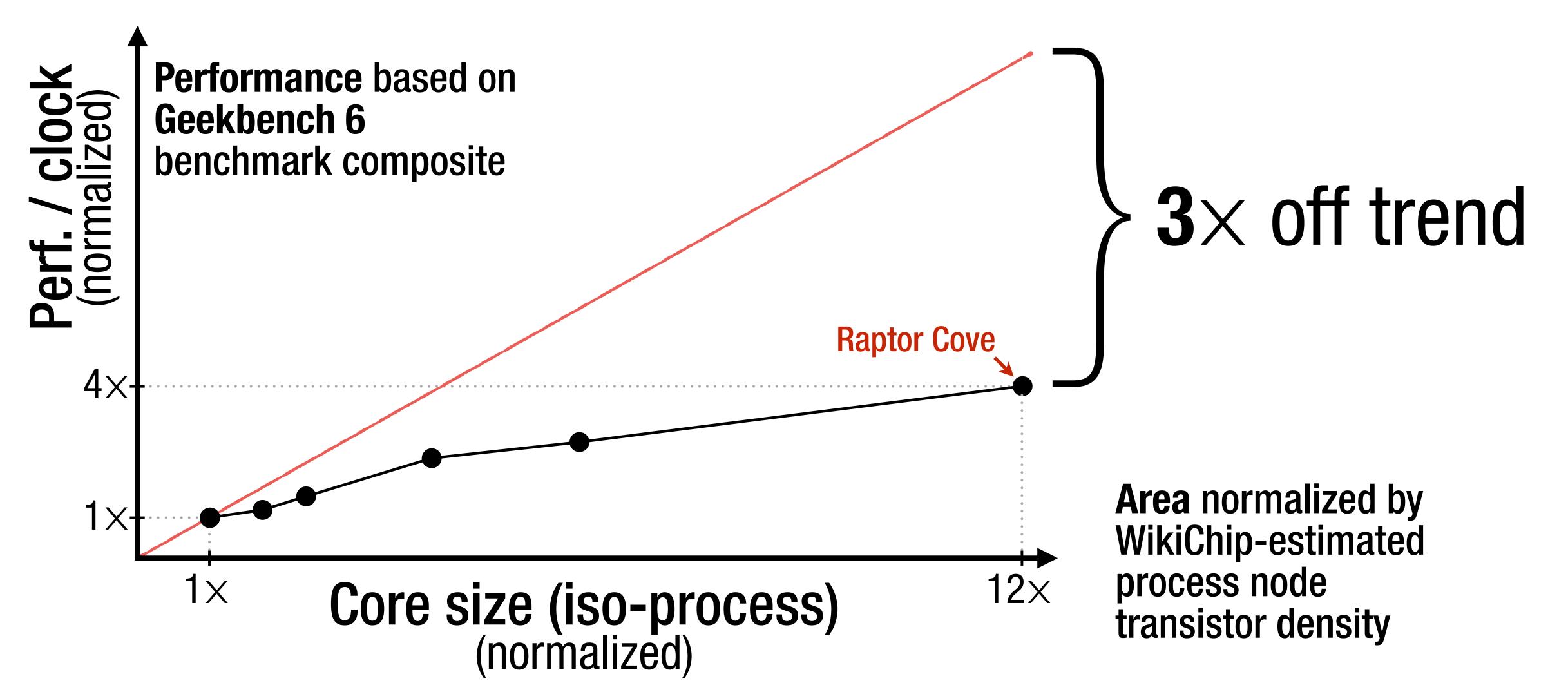
What to do with twice the silicon?



equal area

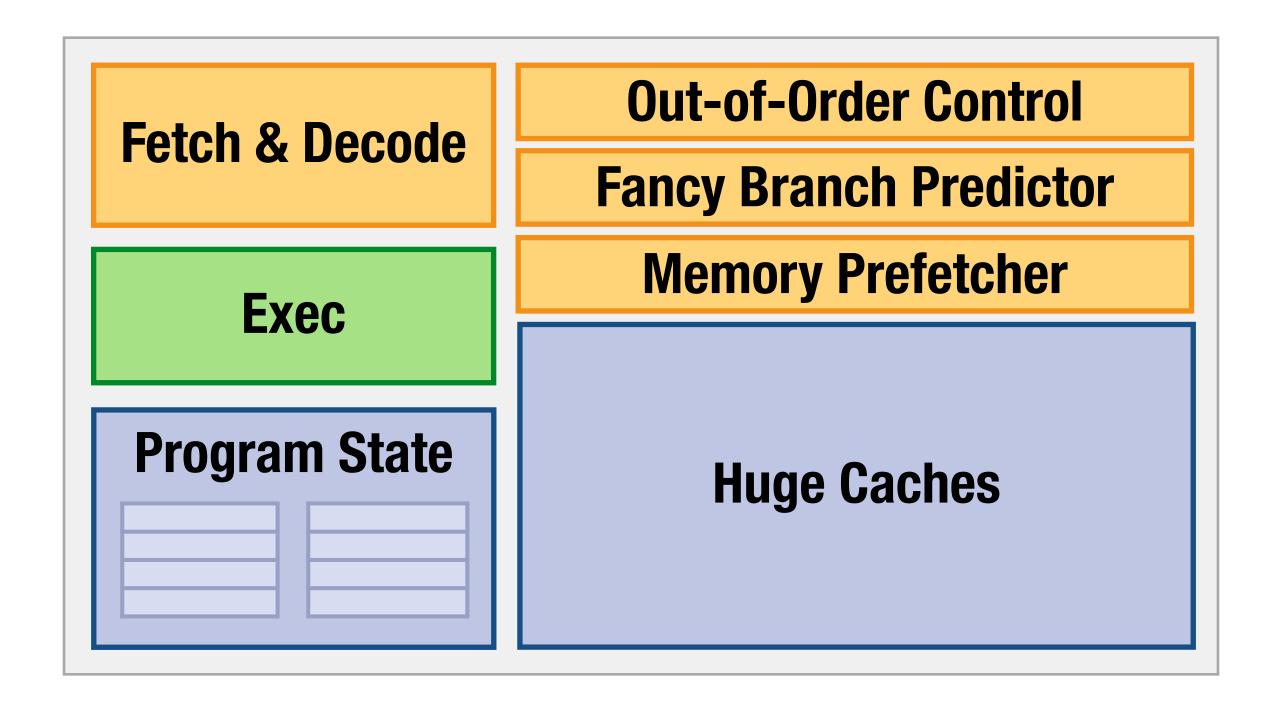


Diminishing returns to scaling single-core performance

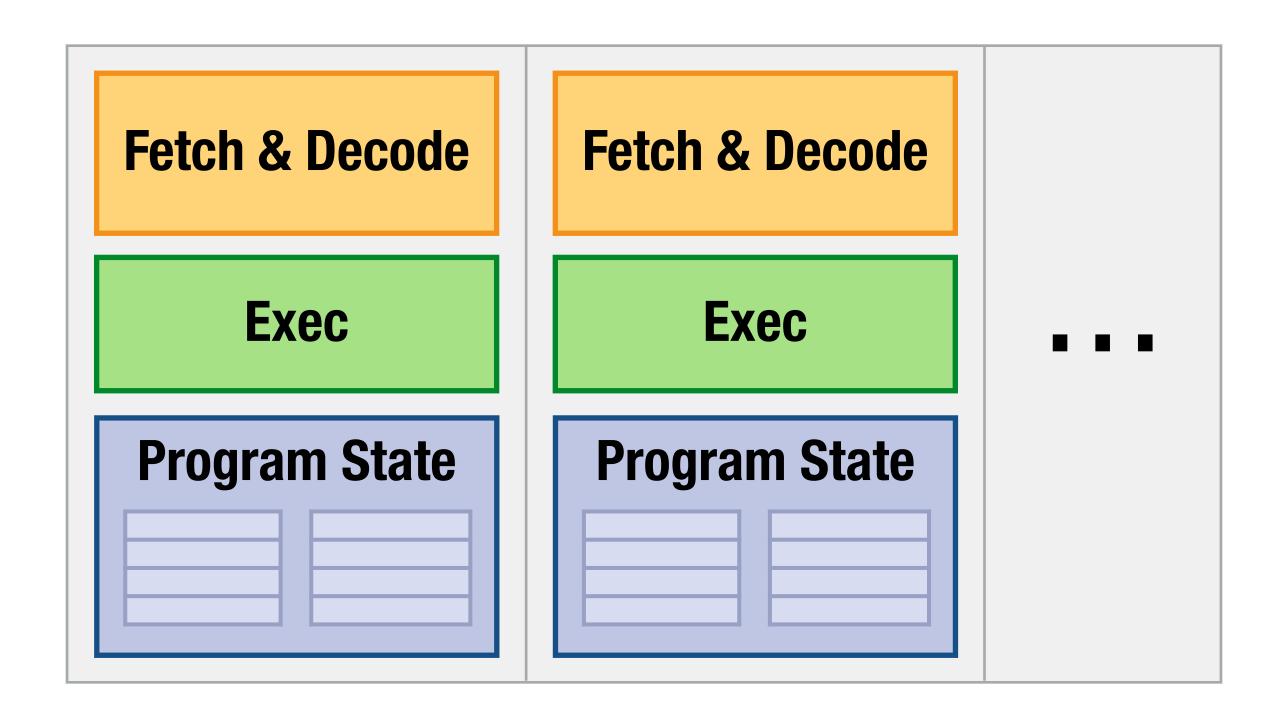


If we want to optimize throughput, is there a better way to scale performance?

Idea 1: remove hardware to optimize single-thread performance



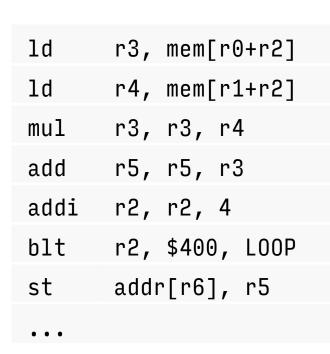
Idea 1: remove hardware to optimize single-thread performance

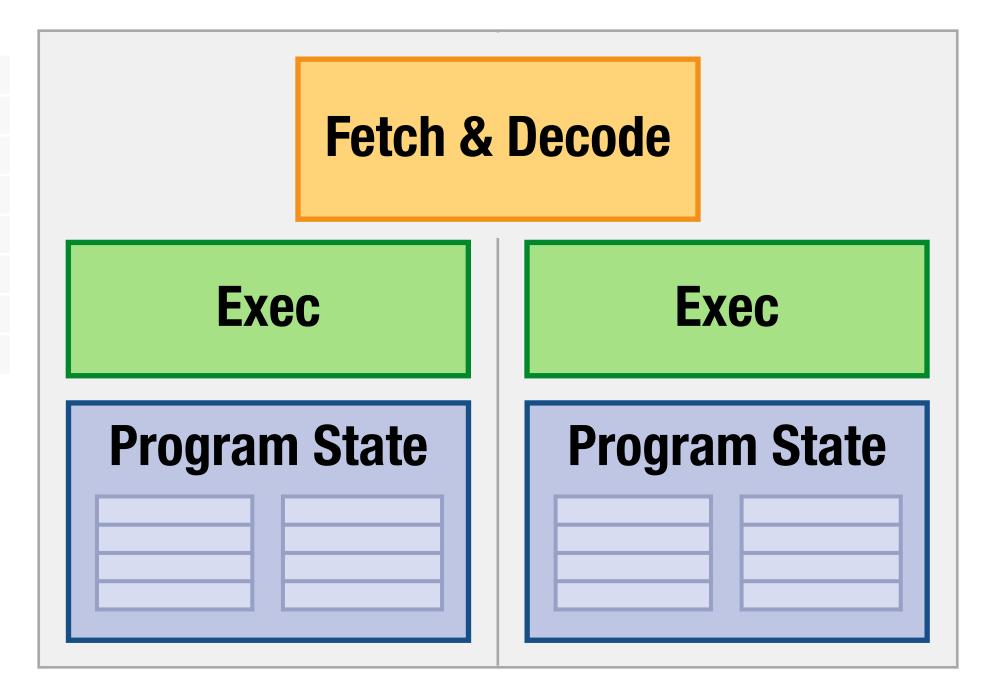


Invest savings in parallelism

```
for (int i = 0; i < N; ++i)
  for (int k = 0; k < N; ++k)
  for (int j = 0; j < N; ++j)
     C[i*N + j] += A[i*N + k] * B[k*N + j];</pre>
```

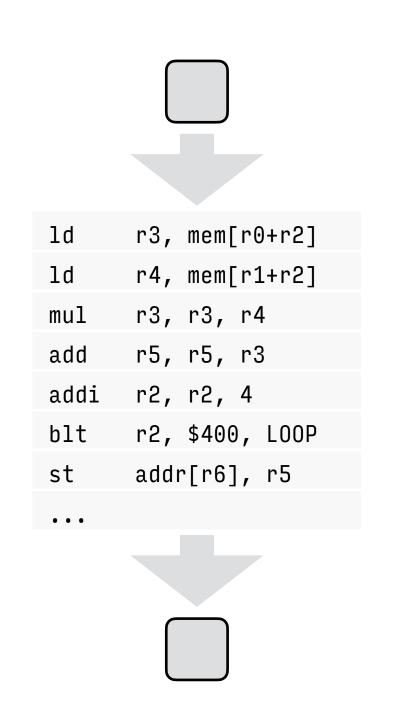
```
for (int j = 0; j < N; ++j)
C[i*N + j] += A[i*N + k] * B[k*N + j];</pre>
```

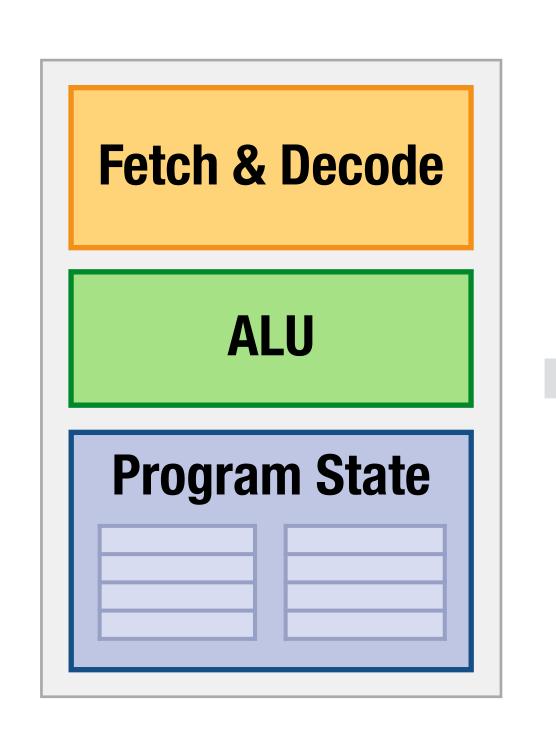


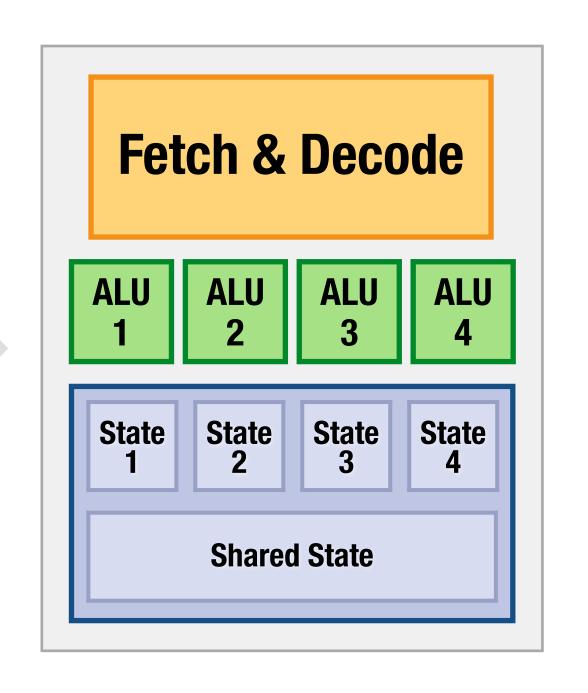


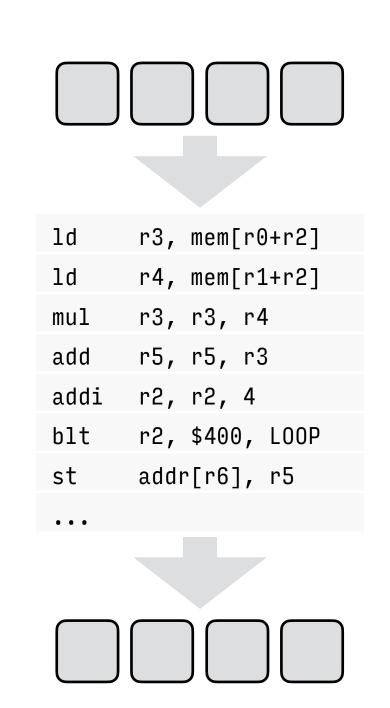
1d	r3, mem[r0+r2]
ld	r4, mem[r1+r2]
mul	r3, r3, r4
add	r5, r5, r3
addi	r2, r2, 4
blt	r2, \$400, LOOP
st	addr[r6], r5

Idea 2: amortize control overhead with SIMD execution







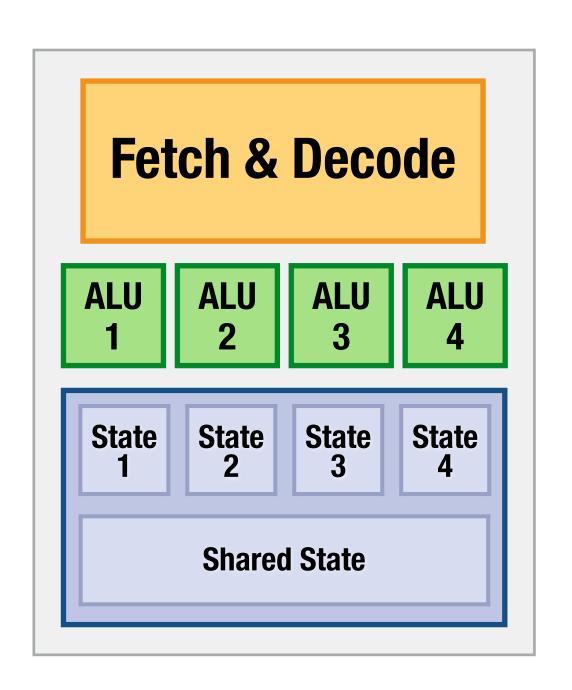


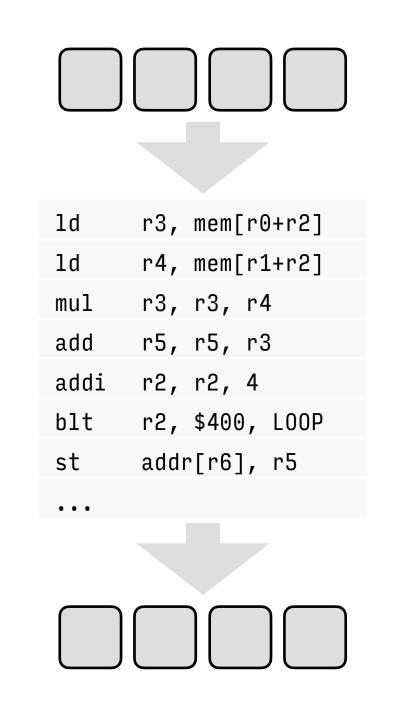
Idea 2: amortize control overhead with SIMD execution

SIMD can be explicit in ISA or implicit in hardware

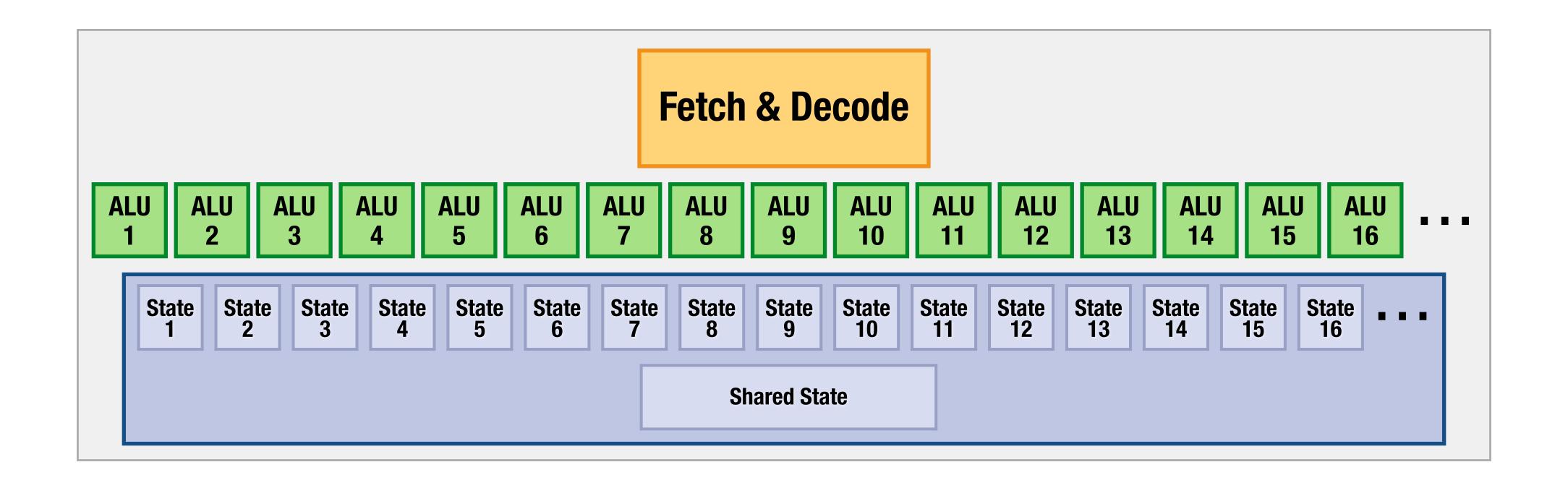
Intel AVX, ARM NEON, etc.

many GPUs





SIMD execution requires coherent control



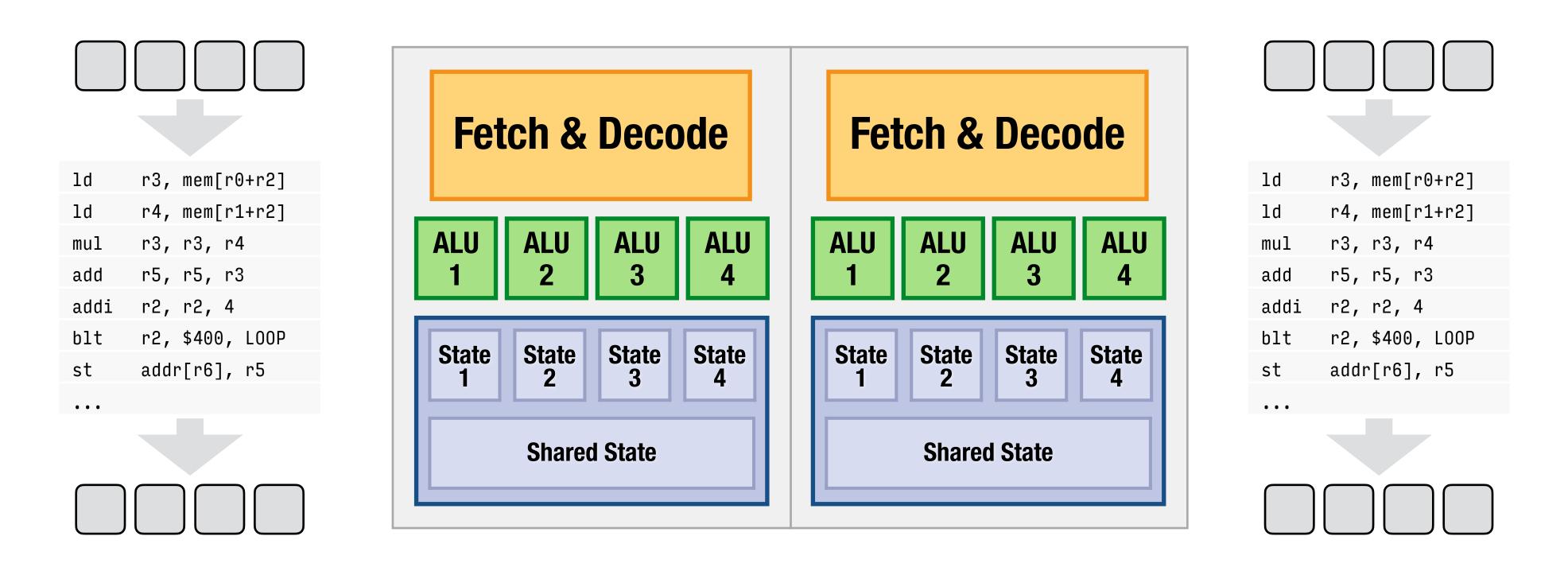
SIMD execution requires coherent control

Time (clocks) ALU 2 ... ALU 8 \times \times \times × × ×

Not all ALUs do useful work every cycle! Worst case: 1/n peak performance

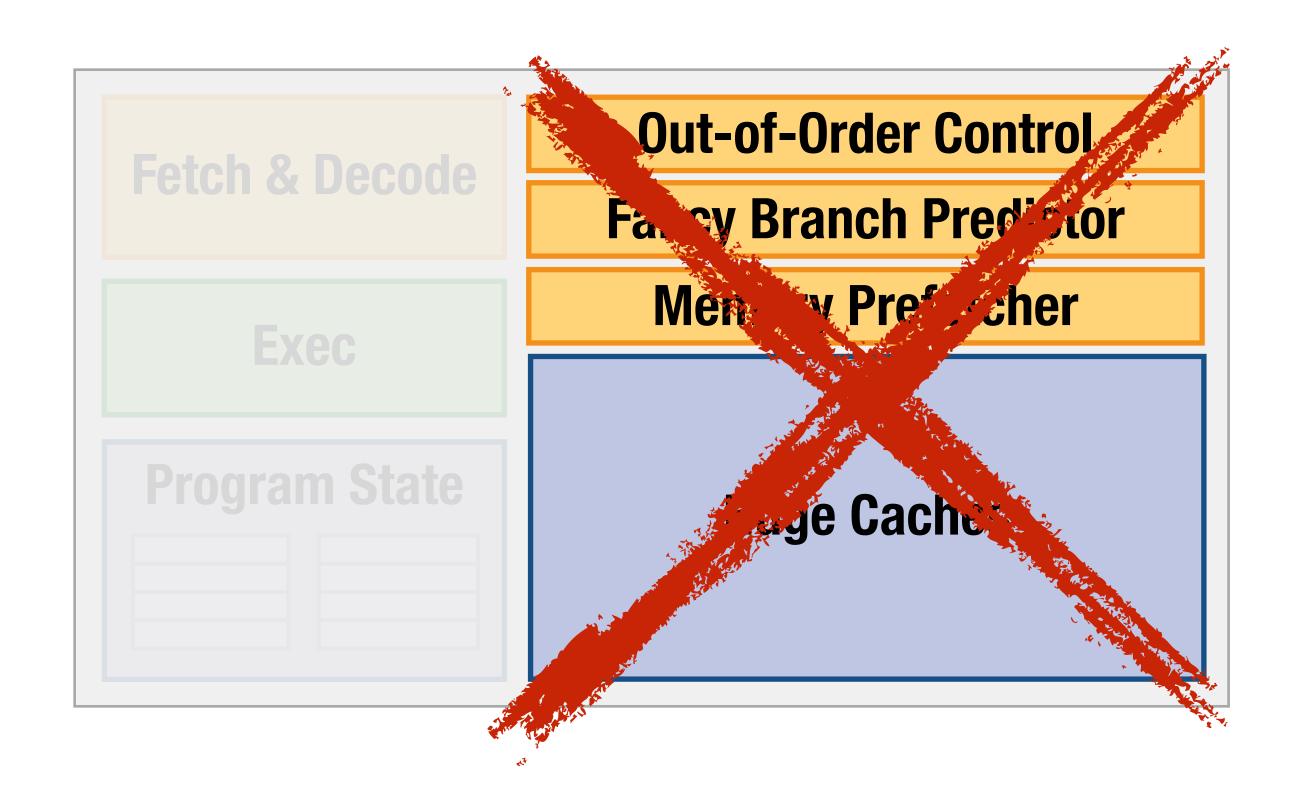
```
<unconditional code>
if (x > 0) {
    y = pow(x, exp);
    y *= Ks;
    refl = y + Ka;
} else {
    x = 0;
    refl = Ka;
<resume unconditional</pre>
        code>
```

Diminishing returns, scale further with multicore



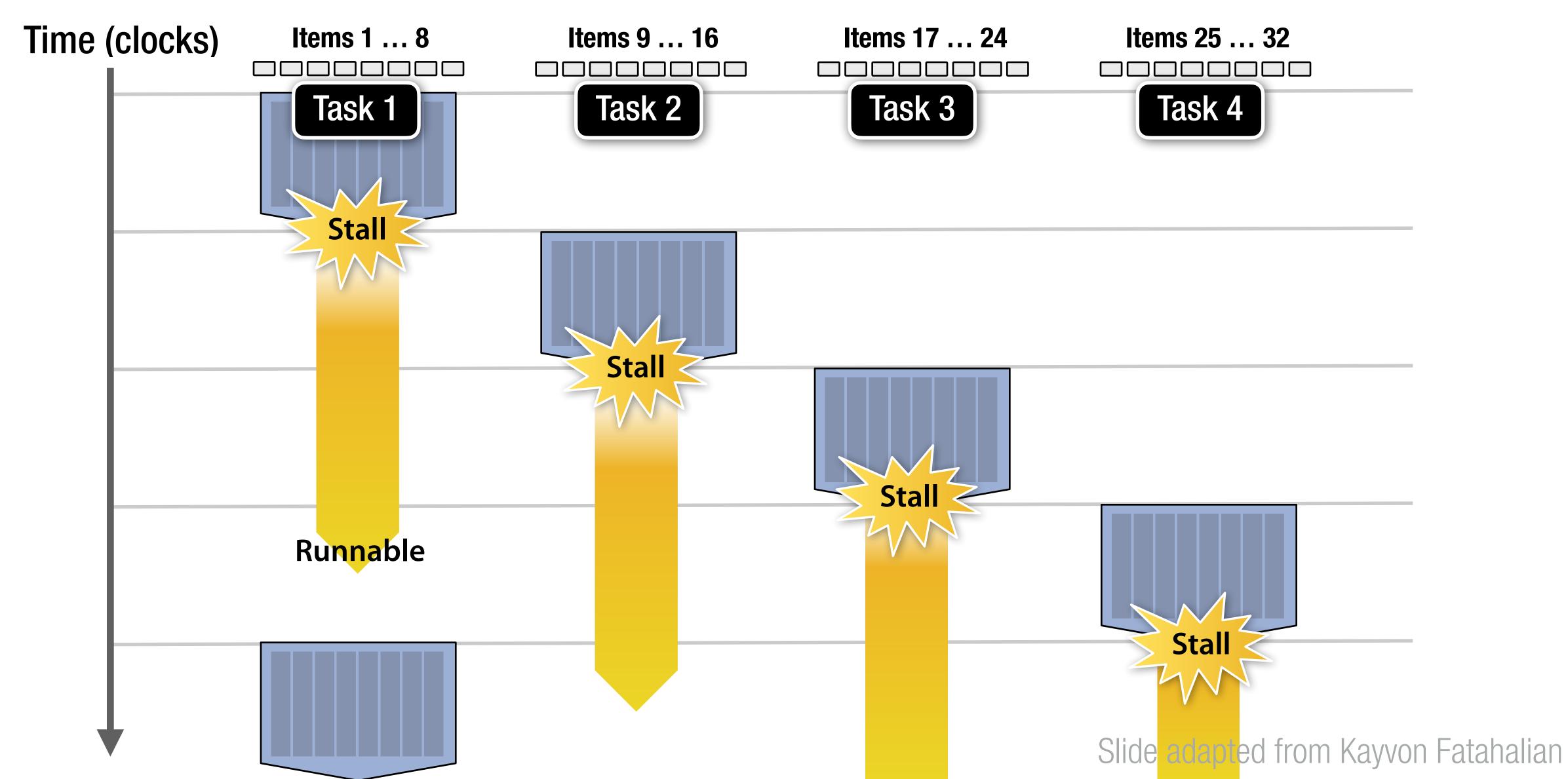
Typical SIMD width: 8 ~ 64

How to deal with latency without stalling



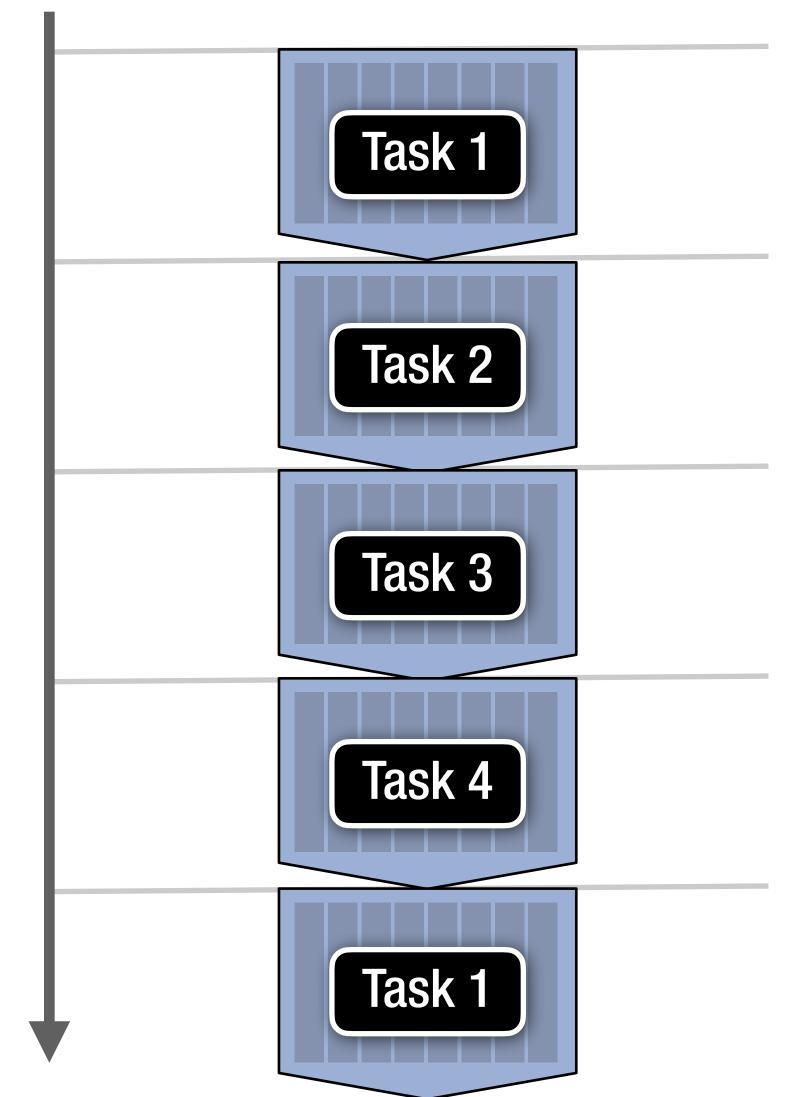
Opportunity: exploit parallelism to hide latency

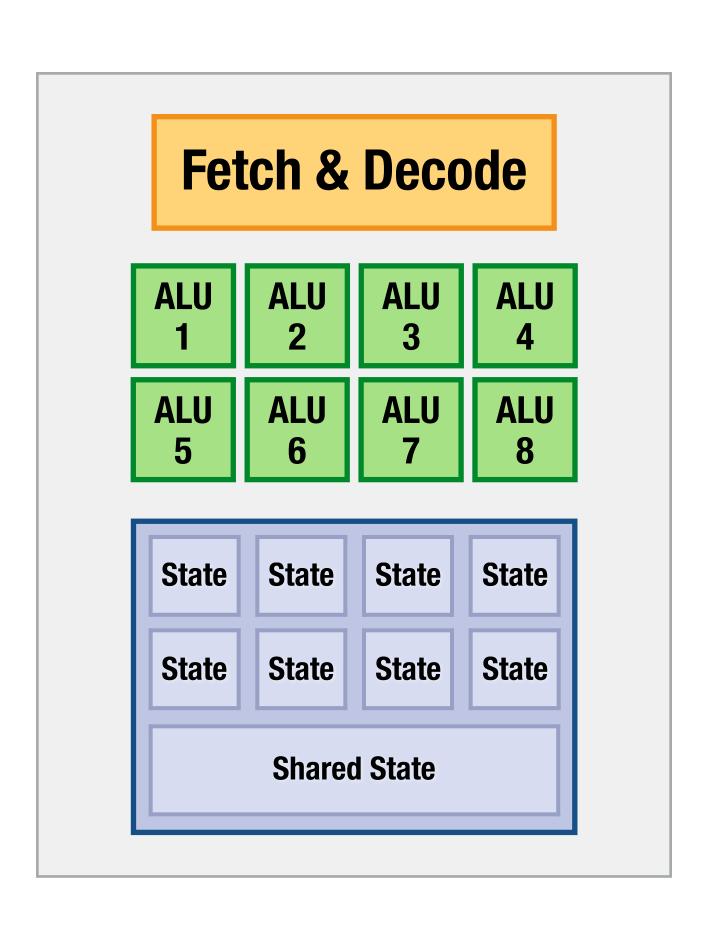
Idea 3: Interleave parallel tasks to hide latency



Idea 3: Interleave parallel tasks to hide latency

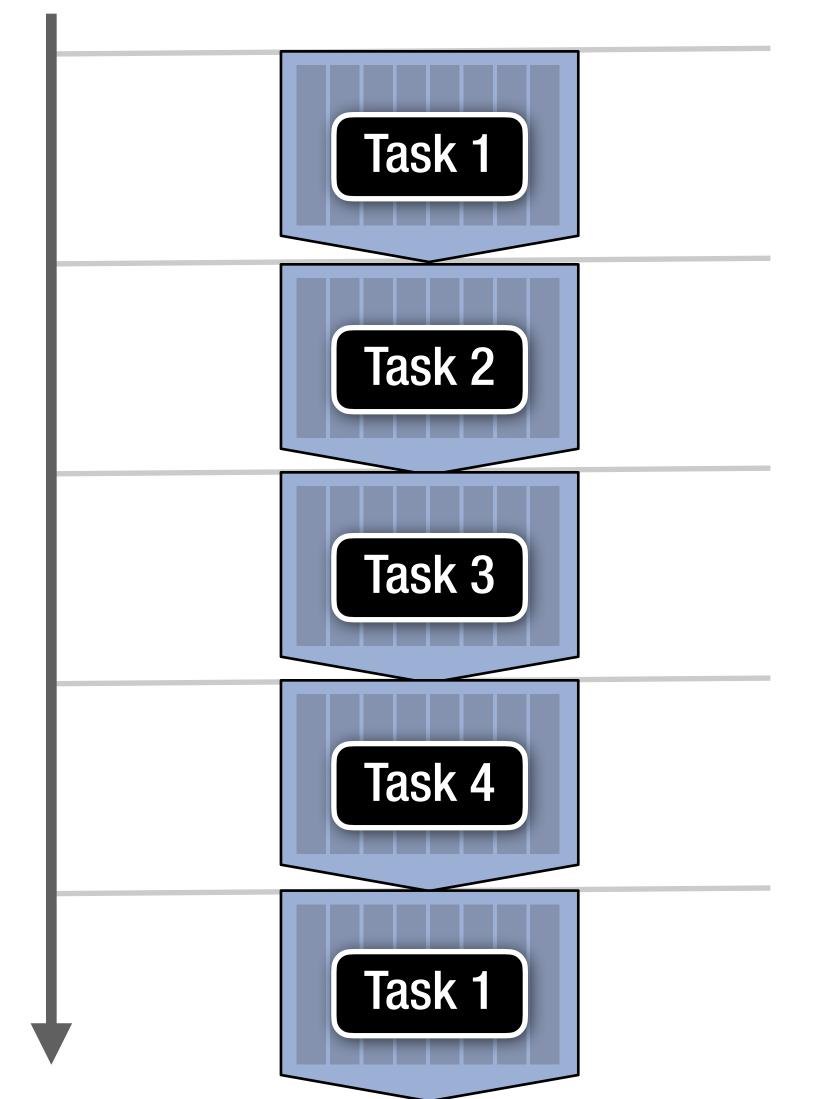
Time (clocks)

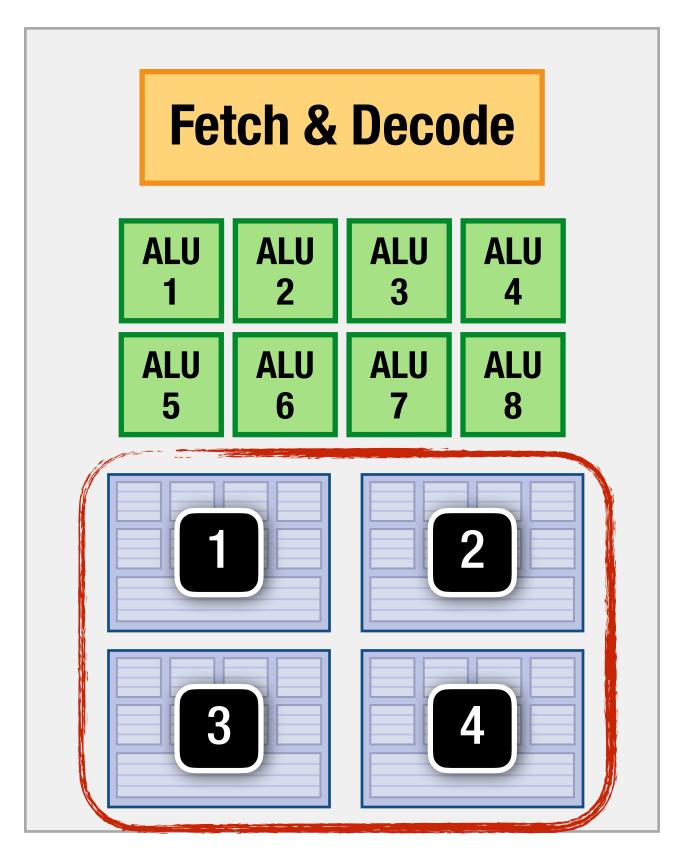




Interleaving requires more state storage

Time (clocks)





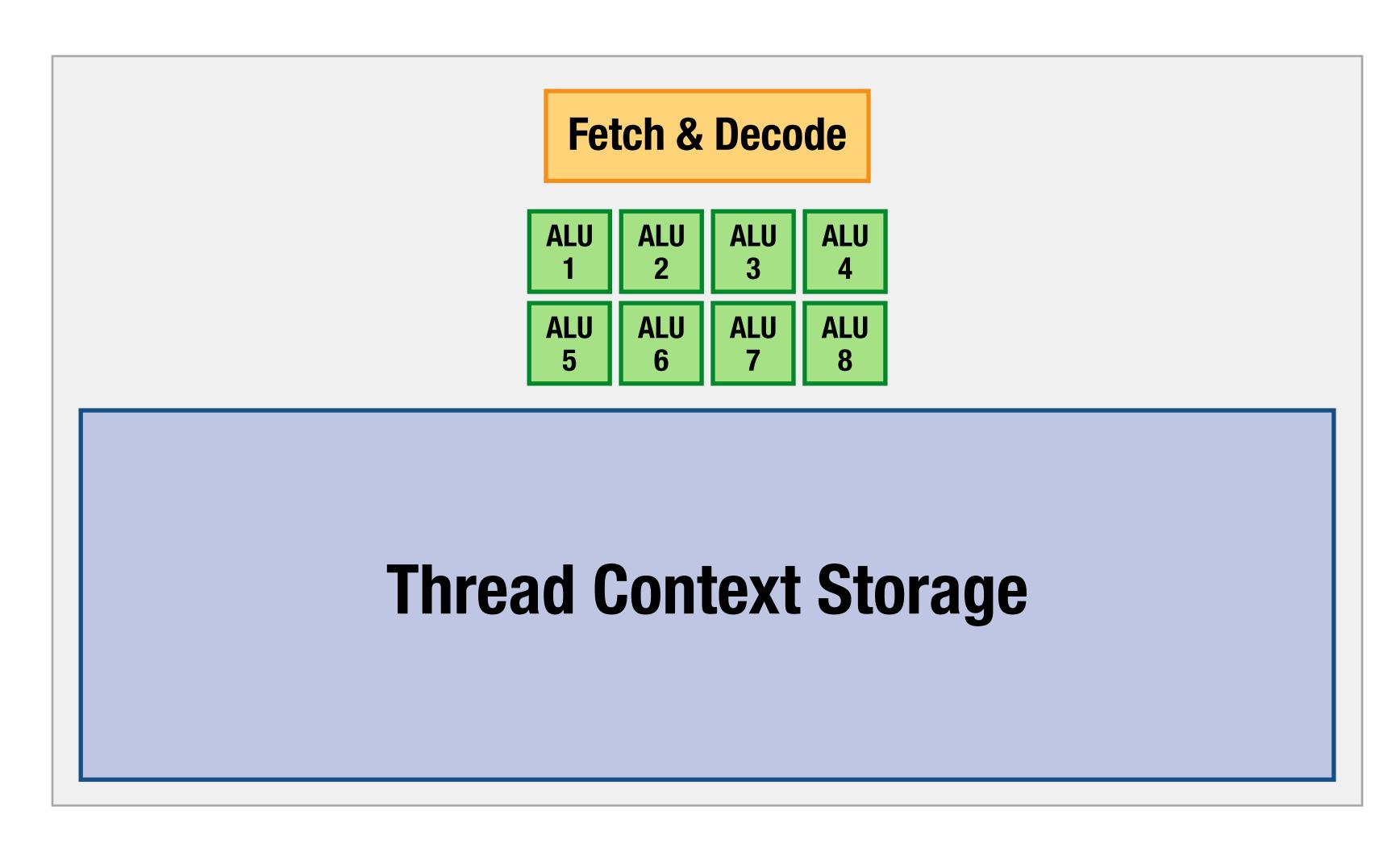
Multithreading requires extra state storage for idle threads

Interleaving requires more state storage

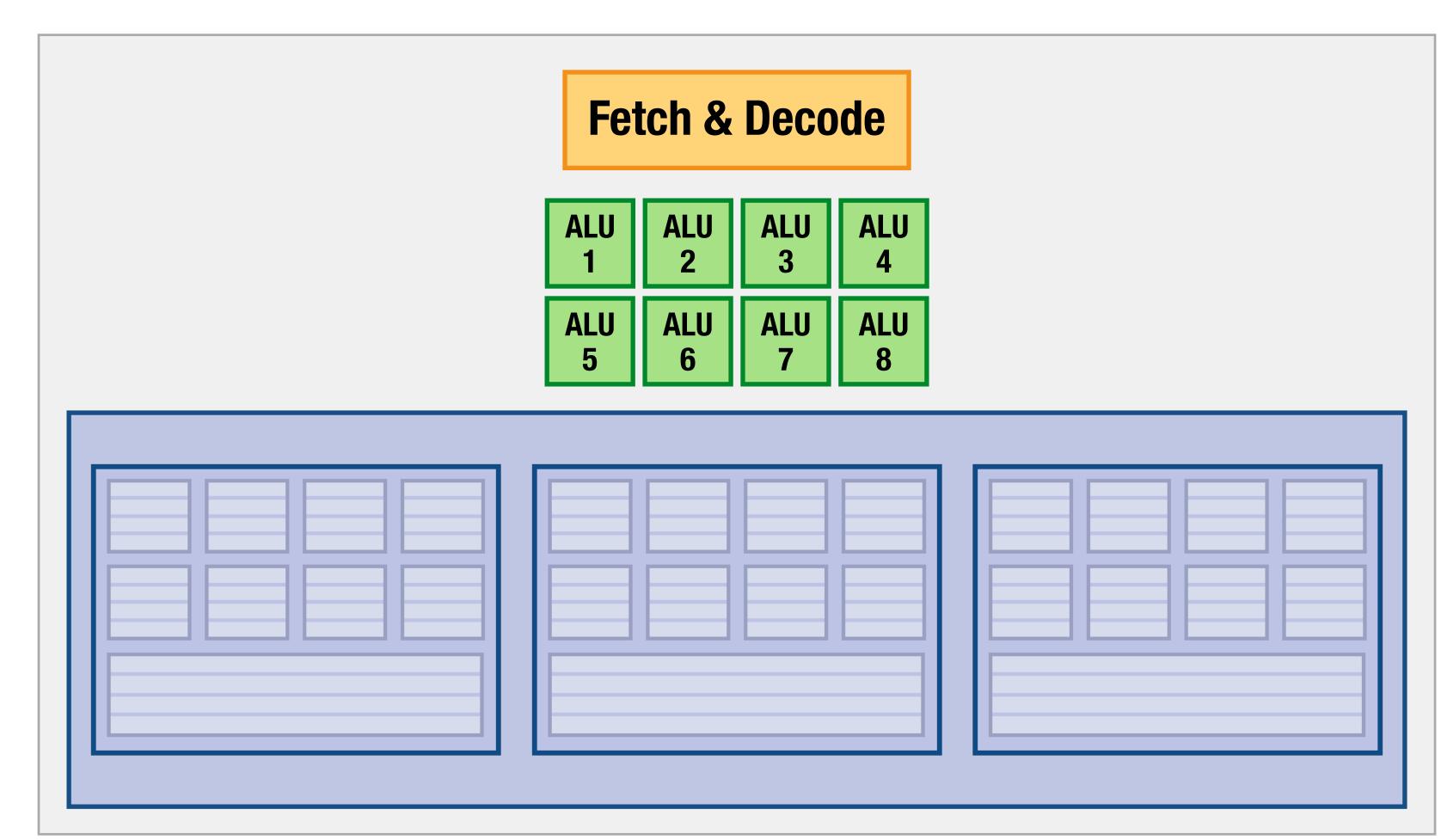
DRAM latency: 100s of cycles

AMD/Intel Hyperthreadng: 2 threads

NVIDIA H100: 16k 32-bit words per warp scheduler → 32MB (core) per GPU

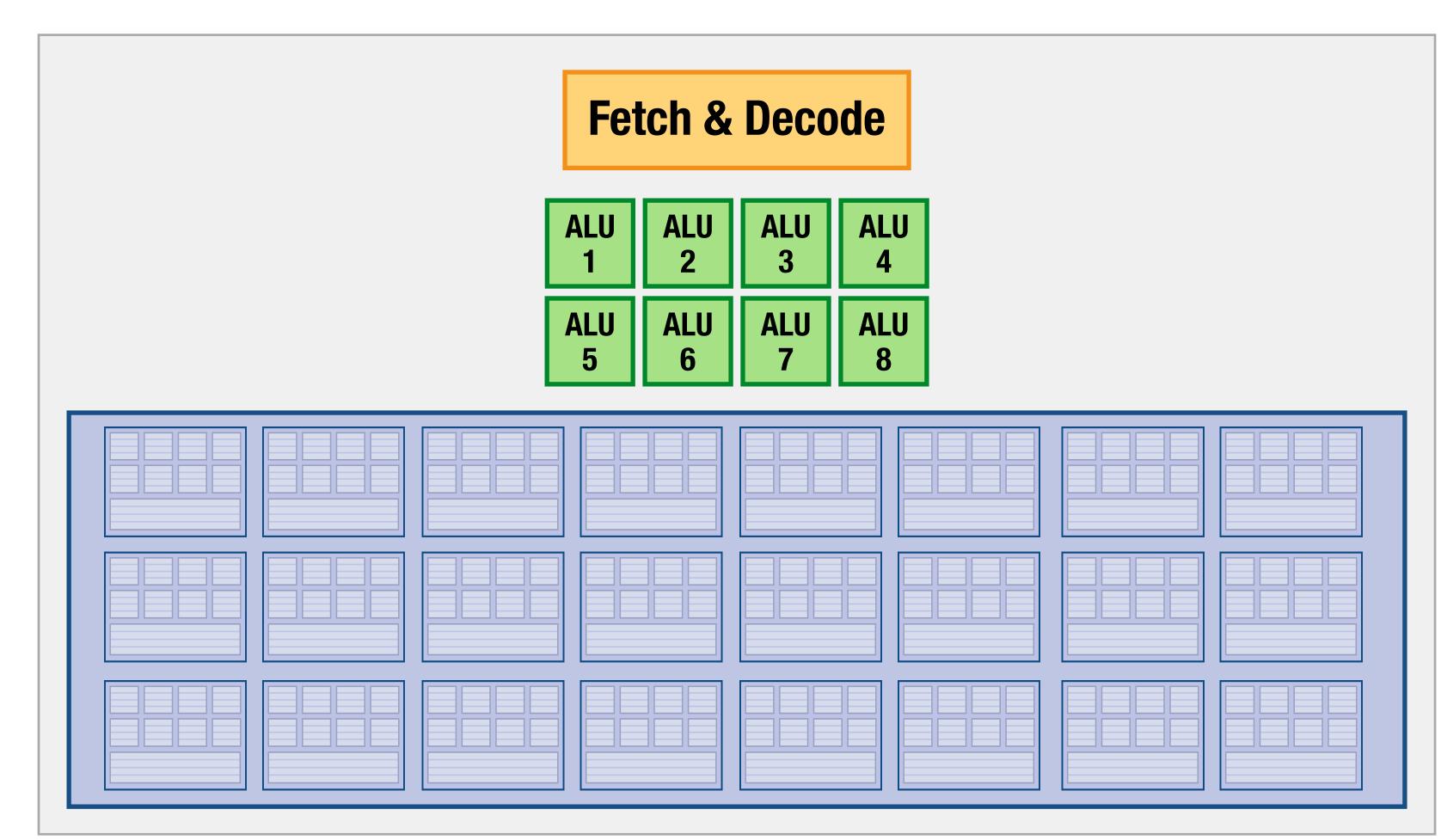


Tradeoff: per-thread state vs. latency hiding



Few, large contexts: limited latency hiding

Tradeoff: per-thread state vs. latency hiding

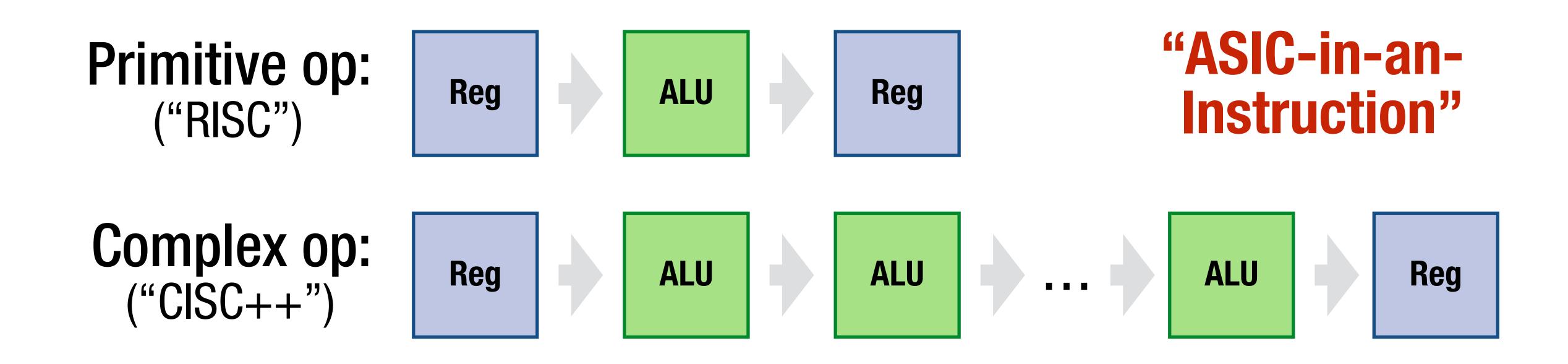


Many, small contexts: maximal latency hiding

A throughput-oriented processor exploits abundant parallelism for efficiency

- Scale performance with **multicore**, not instruction-level parallelism
- Amortize control overhead with SIMD execution
- Hide latency with concurrent threads, not speculation

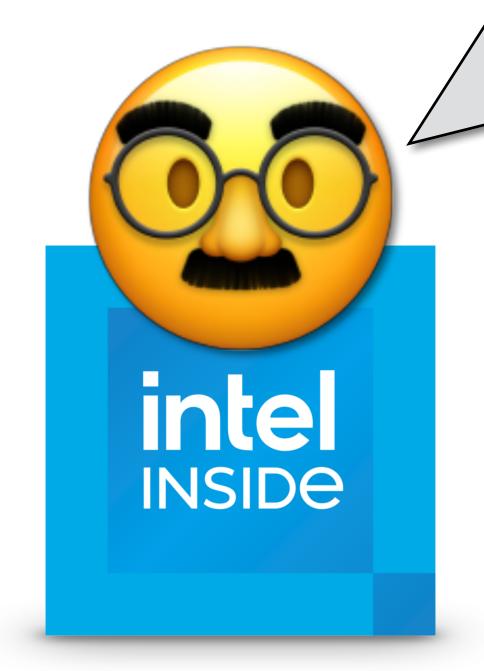
Idea 4: amortize instruction overheads with more complex instructions



e.g., AES, video encode/decode, DSP, texture filtering, . . .

and especially matrix multiply!

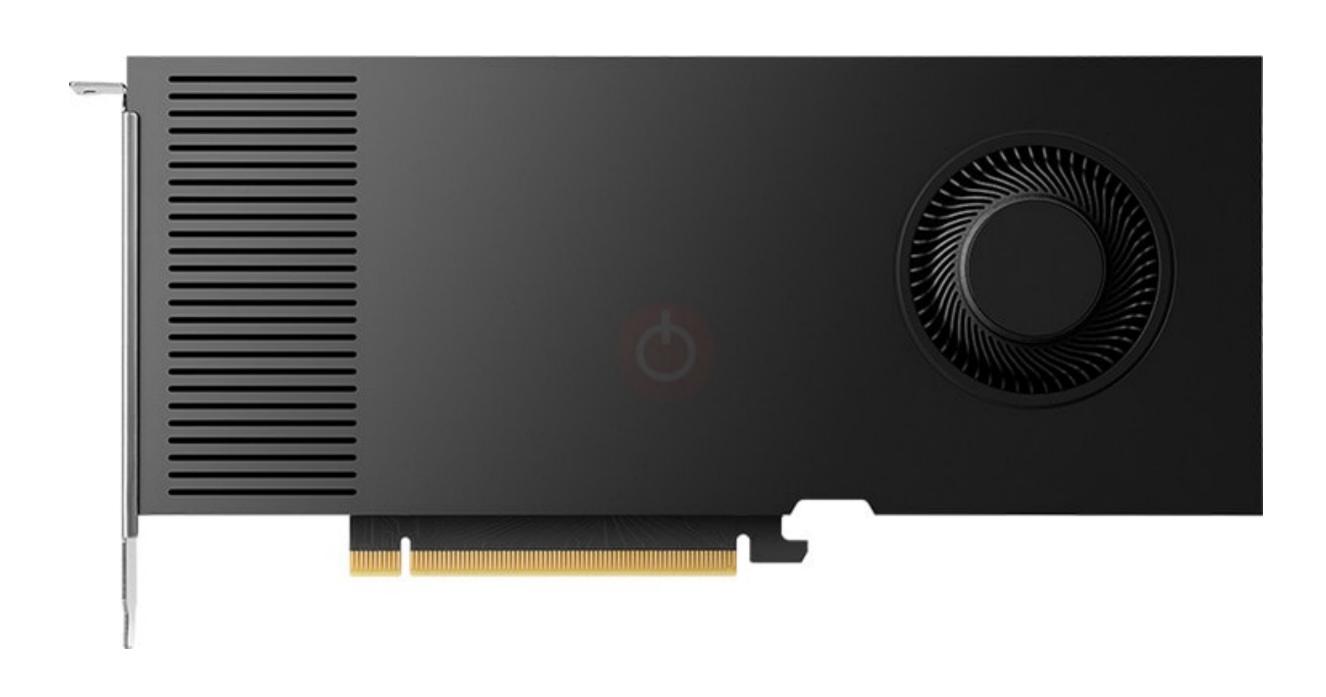
Why yes,
I am still
basically a
PDP-11



You will rewrite all your code in CUDA . . . and pray I don't alter the deal any further!

How do these ideas appear in real hardware?

Our GPU: NVIDIA RTX 4000 Ada (AD104 chip)





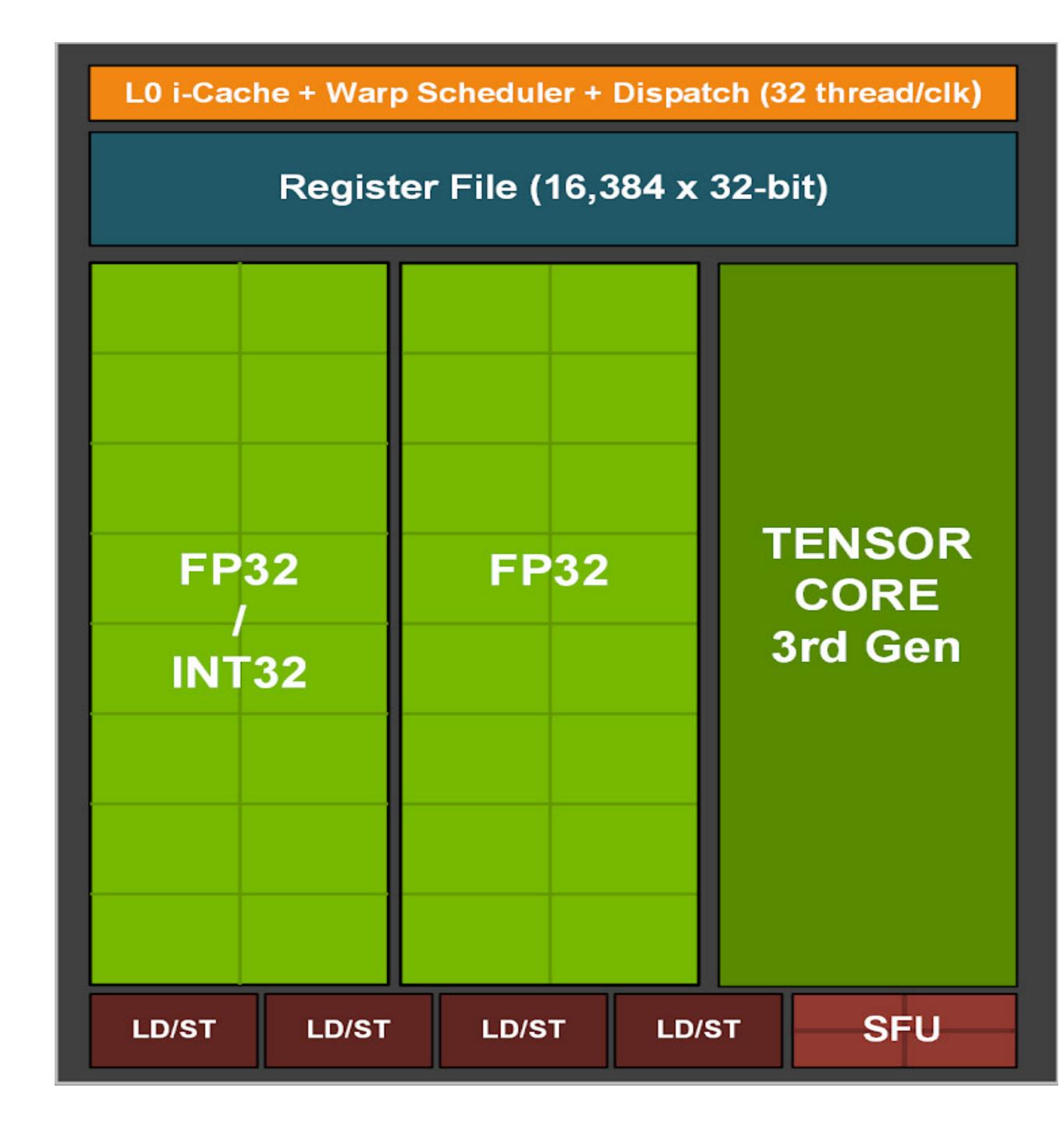
One "core" of our GPU ("warp scheduler")

32 x 32-bit Exec. Units (ALUs / vector lanes)

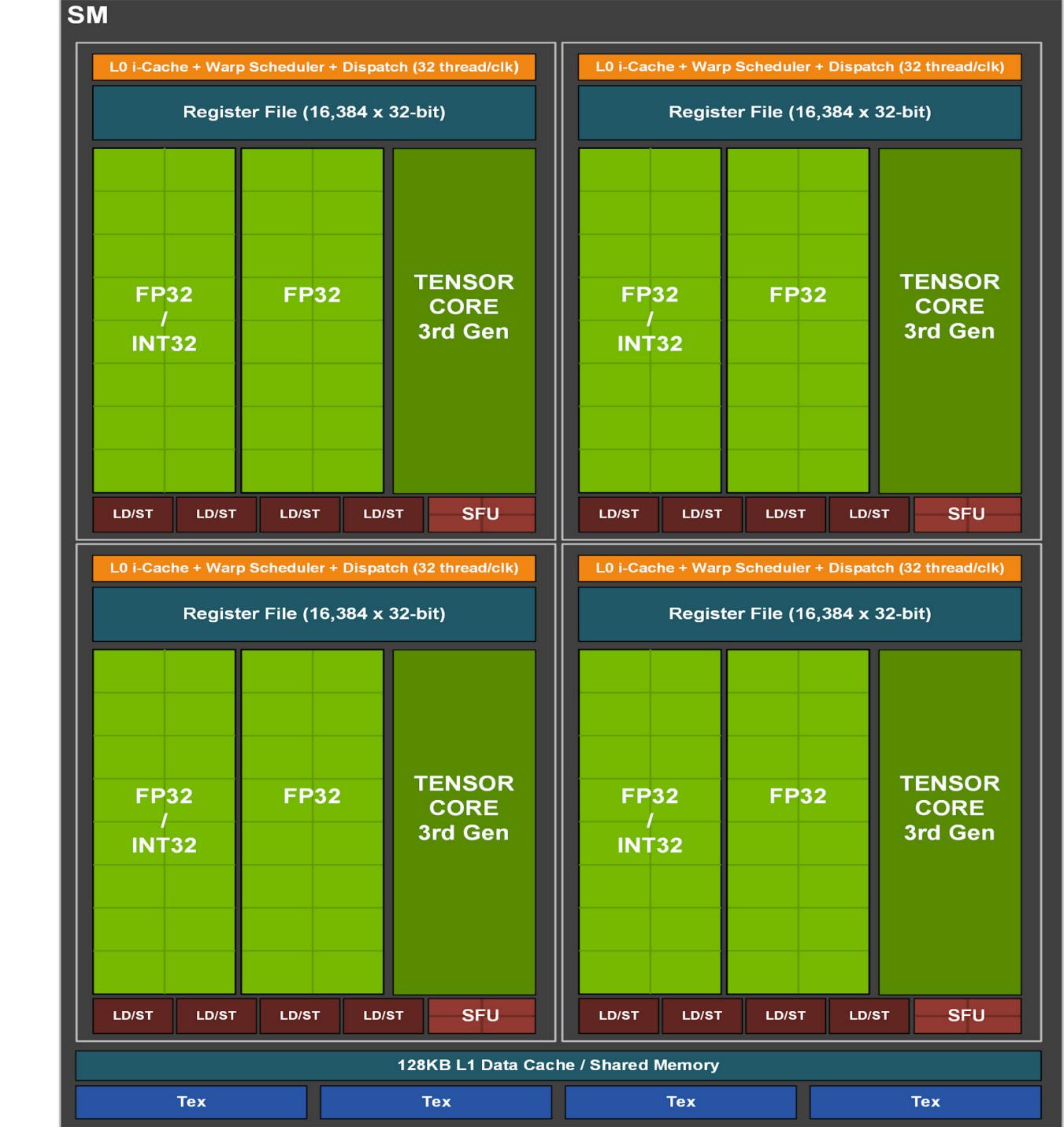
512 x 32 x 32-bit regs

1 warp instruction / clock (32 lanes)

Up to 12 live threads (independent warps)



One "SM" is a cluster of 4 warp schedulers



Our whole GPU

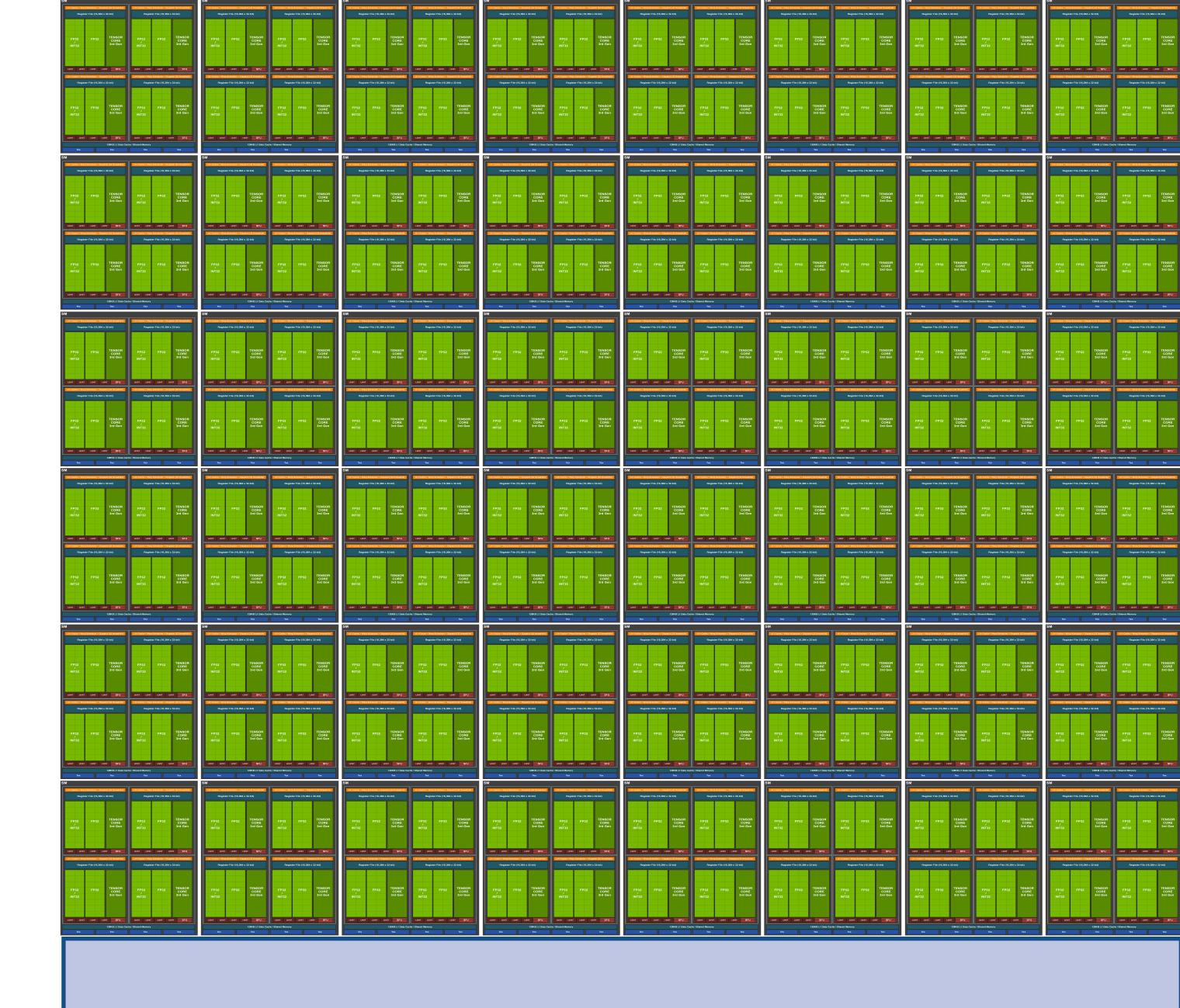
48 SMs x 4 = 192 cores

x32 = 6144 exec. units

② 2.175 GHz= 26.7 TFLOPS

192x12 = 2,304 threads

96k 1024-bit registers = 12 MB 48 MB L2 cache



L2 Cache (48 MB)

Our CPU: AMD Ryzen 7 7700

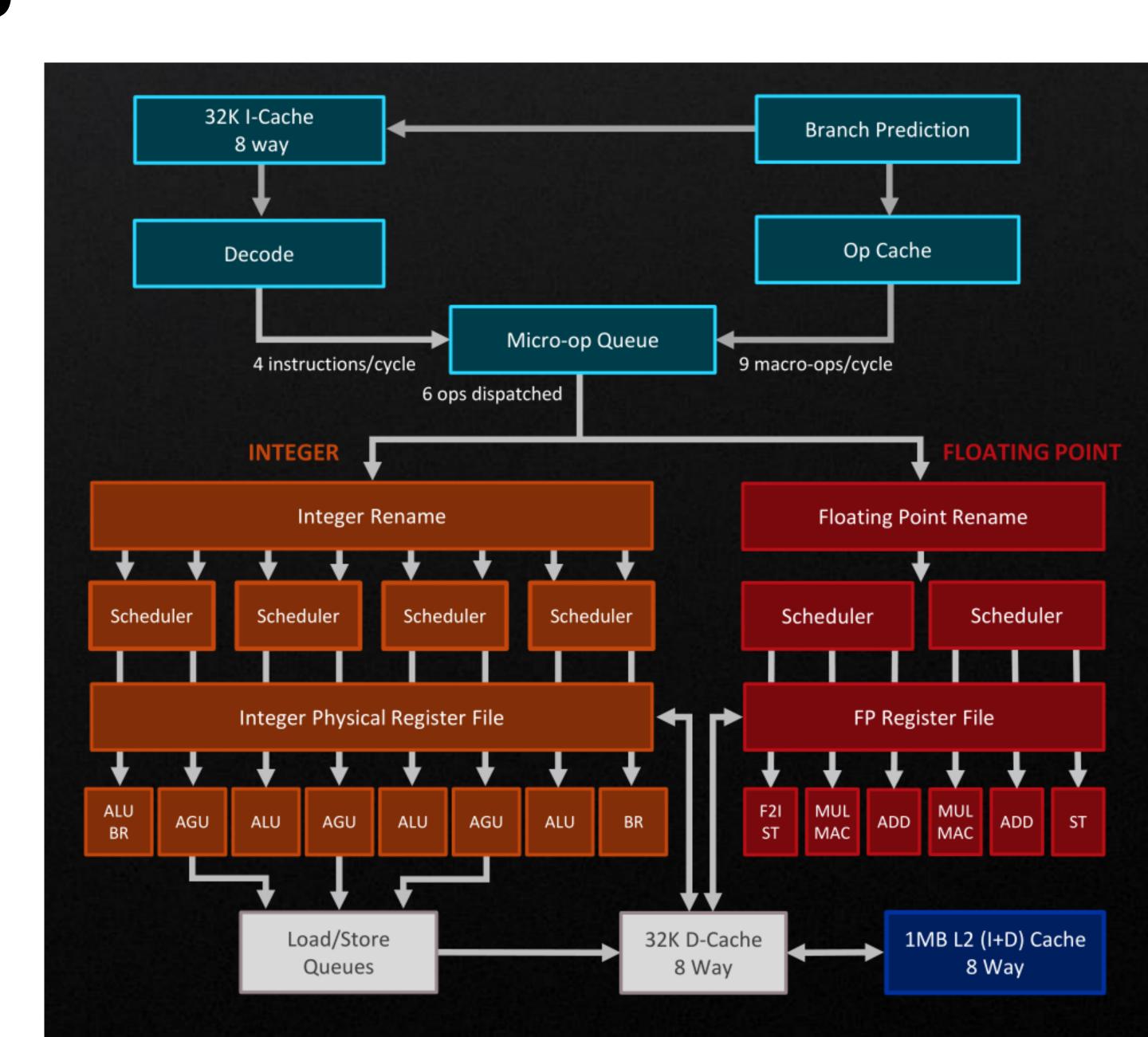
One core of our CPU (AMD Zen 4)

Huge, complex control logic (6-wide, 000, ...)

Two 256-bit vector ALUs = 16 x 32-bit exec. units

192 vector registers

- 1 MB cache
- 2 "hyperthreads"



Our whole CPU

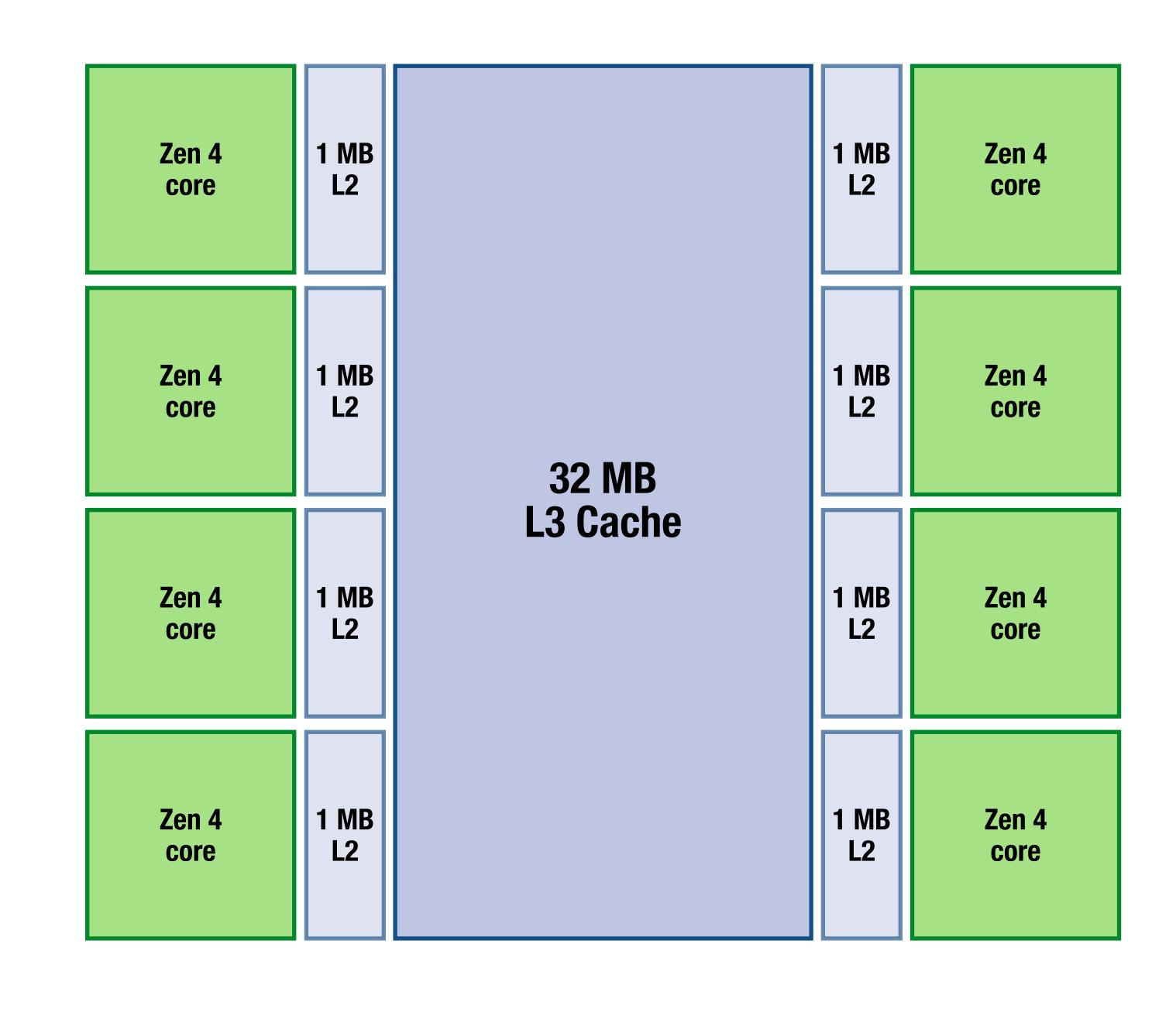
8 "Zen 4" cores x 16 = 128 exec units

@ 3.8 ~ 5.5 GHz = 0.97 ~ 1.4 TFLOPS

 $8 \times 2 = 16$ threads

1.5k 512-bit registers
= 24 KB

40 MB total L2+L3



Our CPU

8 "Zen 4" cores x 16 = 128 exec units

@ 3.8 ~ 5.3 GHz = 0.97 ~ 1.4 TFLOPS

 $8 \times 2 = 16$ threads

1.5k 512-bit registers= 24 KB40 MB total L2+L3

Our GPU

48 SMs

x 4 = 192 cores

x32 = 6144 exec. units

② 2.175 GHz= 26.7 TFLOPS

192x12 = 2,304 threads

96k 1024-bit registers = 12 MB

48 MB L2 cache

Our CPU 70 mm² (CCD only)

Our GPU

294 mm² (full die)

70 mm²

/8 cores

 $= 8.75 \text{ mm}^2$

~200 mm²

/ 192 cores

 $= 1.05 \text{ mm}^2 / \text{core}$

6-7x faster on Mandelbrot

8x smaller

A throughput processor is still a processor!

(or actually, many of them)

But we need to **change our programs** to use it efficiently expose **explicit parallelism** within & across instruction streams