
6.S894
Accelerated Computing

Lecture 2: Throughput
Processors

Jonathan Ragan-Kelley

September 11, 2025

What is a processor?
a programmable computer
that runs a sequence of
instructions over time
including control flow,
computation & state updates

What is a processor?

🥸
Why yes,
I am still

basically a
PDP-11

1970s 2020s

Slides inspired by Kayvon Fatahalian

A simple processor

1. Instr. fetch

2. Decode

3. Operand
fetch

4. Execute

5. Write back

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5
...

Processor Program

mul r3, r3, r4

an interpreter for
instructions!

Slides inspired by Kayvon Fatahalian

A simple processor

Processor Program

Control
(Fetch & Decode)

Execution
(ALU)

Program State
(Registers)

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5
...

mul r3, r3, r4

an interpreter for
instructions!

Slides inspired by Kayvon Fatahalian

Optimization 1: Increase the clock speed

Processor

Control
(Fetch & Decode)

Execution
(ALU)

Program State
(Registers)

Higher voltage
⮑ power grows with v2

Deeper pipelining
⮑ lower average IPC

Faster transistors
⮑ higher leakage

Slides inspired by Kayvon Fatahalian

Optimization 2:

Processor

Control
(Fetch & Decode)

Execution
(ALU)

Program State
(Registers)

Execute multiple instructions
per cycle (superscalar)

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5
...

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4

addi r2, r2, 4

Slides inspired by Kayvon Fatahalian

Optimization 2:

Processor

Fetch & Decode 2

Exec 1

Program State
(Registers)

Execute multiple instructions
per cycle (superscalar)

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5
...

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4

addi r2, r2, 4

Out-of-Order Control

Fetch & Decode 1

Exec 2

Slides inspired by Kayvon Fatahalian

Optimization 3:

Processor

Fetch & Decode 2

Exec 1

Program State
(Registers)

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5
...

Out-of-Order Control

Fetch & Decode 1

Exec 2

blt r2, $400, LOOP

Avoid stalls through ILP

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]

& speculation

addi r2, r2, 4

Slides inspired by Kayvon Fatahalian

Optimization 3:

Processor

Fetch & Decode 2

Exec 1

Program State
(Registers)

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5
...

Out-of-Order Control

Fetch & Decode 1

Exec 2

blt r2, $400, LOOP

Branch Predictor ld r3, mem[r0+r2]
ld r4, mem[r1+r2]

Cache
Memory

Prefetcher

Avoid stalls through ILP
& speculation

addi r2, r2, 4

This makes sense when you have only one

Processor

processor

This makes sense when you have only one

Processor

processor

(to scale)

Silicon Chip

The reality today: At the same time:

We most need
performance when
processing lost of stuff

⮑ abundant data-
parallelism

A different
view of performance:

throughput-oriented

Optimize aggregate rate
of processing many items

Three things
drive throughput:

Amount of work
to be done1
Amount of resources
to be applied2
Efficiency of applying
them to useful work3

(silicon, energy)

Goal:
optimize this!

Constraints set
by application,
Si process node}

What to do with twice the silicon?

State

Control

Exec Exec

Cache

What to do with twice the silicon?

State

Control

Exec Exec

Cache

Exec

Another cache!

State

Control

Exec Exec

Cache
State

Control

Exec Exec

Cache

=
equal
area

Double the
performance
of one core

≪2⨉ the
performance of

smaller core

1⨉

4⨉

1⨉

Diminishing returns to
scaling single-core performance

Pe
rf.

 /
cl

oc
k

Core size (iso-process) 12⨉

(normalized)

(n
or

m
al

iz
ed

) Performance based on
Geekbench 6
benchmark composite

Area normalized by
WikiChip-estimated
process node
transistor density

3⨉ off trend}
Raptor Cove

If we want to optimize throughput,
is there a better way to scale
performance?

Slides inspired by Kayvon Fatahalian

Idea 1: remove hardware to optimize
 single-thread performance

Program State

Fetch & Decode

Exec

Huge Caches

Out-of-Order Control

Fancy Branch Predictor

Memory Prefetcher

Slides inspired by Kayvon Fatahalian

Idea 1: remove hardware to optimize
 single-thread performance

Program State

Fetch & Decode

Exec …
Program State

Fetch & Decode

Exec

Invest savings in parallelism

for (int i = 0; i < N; ++i)	
 for (int k = 0; k < N; ++k)

for (int j = 0; j < N; ++j)	
 C[i*N + j] += A[i*N + k] * B[k*N + j];

for (int j = 0; j < N; ++j)	
 C[i*N + j] += A[i*N + k] * B[k*N + j];

for all (int j = 0; j < N; ++j)	
 C[i*N + j] += A[i*N + k] * B[k*N + j];

Program State

Fetch & Decode

Exec

Program State

Fetch & Decode

Exec

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5
...

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5
...

Fetch & Decode

Slides inspired by Kayvon Fatahalian

Idea 2: amortize control overhead with
 SIMD execution

Fetch & Decode

ALU
1

ALU
2

ALU
3

ALU
4

State
1

State
2

State
3

State
4

Shared State

Program State

Fetch & Decode

ALU

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5
...

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5
...

Slides inspired by Kayvon Fatahalian

Idea 2: amortize control overhead with
 SIMD execution

Fetch & Decode

ALU
1

ALU
2

ALU
3

ALU
4

State
1

State
2

State
3

State
4

Shared State

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5
...

SIMD can be
explicit in ISA
or implicit in
hardware

Intel AVX,
ARM NEON,
etc.

many GPUs

Slides inspired by Kayvon Fatahalian

SIMD execution requires coherent control

Fetch & Decode

ALU
13

ALU
14

ALU
15

ALU
16

Shared State

ALU
9

ALU
10

ALU
11

ALU
12

ALU
5

ALU
6

ALU
7

ALU
8

ALU
1

ALU
2

ALU
3

ALU
4

State
13

State
14

State
15

State
16

State
9

State
10

State
11

State
12

State
5

State
6

State
7

State
8

State
1

State
2

State
3

State
4

…

…

Slide adapted from Kayvon Fatahalian

SIMD execution requires coherent control
ALU 1 ALU 2 . . . ALU 8. . .

Time (clocks) 2 . . . 1 . . . 8

if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional	
 code>

y = pow(x, exp);	

y *= Ks;	

refl = y + Ka;

x = 0; 	

refl = Ka;

T T T F FF F F

Not all ALUs do useful work every cycle!
Worst case: 1/n peak performance

Diminishing returns,
scale further with multicore

Fetch & Decode

ALU
1

ALU
2

ALU
3

ALU
4

State
1

State
2

State
3

State
4

Shared State

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5
...

Fetch & Decode

ALU
1

ALU
2

ALU
3

ALU
4

State
1

State
2

State
3

State
4

Shared State

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5
...

Typical SIMD width: 8 ~ 64

Slide adapted from Kayvon Fatahalian

How to deal with latency without stalling

Program State

Fetch & Decode

Exec

Huge Caches

Out-of-Order Control

Fancy Branch Predictor

Memory Prefetcher
Opportunity:
exploit parallelism
to hide latency

Idea 3: Interleave parallel tasks to hide latency
Time (clocks) Items 1 … 8

Task 1

Stall

Runnable

Items 9 … 16

Task 2

Items 17 … 24

Task 3

Items 25 … 32

Task 4

Stall

Stall

Stall

Slide adapted from Kayvon Fatahalian

Idea 3: Interleave parallel tasks to hide latency
Time (clocks)

Slide adapted from Kayvon Fatahalian

Fetch & Decode

ALU
1

ALU
2

ALU
3

ALU
4

ALU
5

ALU
6

ALU
7

ALU
8

State State State State

Shared State

State State State State

Task 1

Task 2

Task 3

Task 4

Task 1

Interleaving requires more state storage
Time (clocks)

Slide adapted from Kayvon Fatahalian

Fetch & Decode

ALU
1

ALU
2

ALU
3

ALU
4

ALU
5

ALU
6

ALU
7

ALU
8

Task 1

Task 2

Task 3

Task 4

Task 1

1 2

3 4

Multithreading
requires extra
state storage
for idle threads

Interleaving requires more state storage

Slide adapted from Kayvon Fatahalian

Fetch & Decode

ALU
1

ALU
2

ALU
3

ALU
4

ALU
5

ALU
6

ALU
7

ALU
8

DRAM latency:
100s of cycles

AMD/Intel
Hyperthreadng:

2 threads

Thread Context StorageNVIDIA H100:
16k 32-bit words

per warp scheduler
(core)⮑ 32MB

per GPU

Tradeoff: per-thread state vs. latency hiding

Slide adapted from Kayvon Fatahalian

Fetch & Decode

ALU
1

ALU
2

ALU
3

ALU
4

ALU
5

ALU
6

ALU
7

ALU
8

Few, large contexts:
limited latency hiding

Tradeoff: per-thread state vs. latency hiding

Slide adapted from Kayvon Fatahalian

Fetch & Decode

ALU
1

ALU
2

ALU
3

ALU
4

ALU
5

ALU
6

ALU
7

ALU
8

Many, small contexts:
maximal latency hiding

A throughput-oriented processor
exploits abundant parallelism for efficiency

Scale performance with multicore,
not instruction-level parallelism

Amortize control overhead
with SIMD execution

Hide latency with concurrent
threads, not speculation3

2
1

Idea 4: amortize instruction overheads with
more complex instructions

Reg ALU RegPrimitive op:
(“RISC”)

Complex op:
(“CISC++”)

Reg ALU RegALU ALU…

e.g., AES, video encode/decode,
DSP, texture filtering, …

“ASIC-in-an-
Instruction”

and especially
matrix multiply!

🥸

Why yes,
I am still

basically a
PDP-11

You will rewrite
all your code in

CUDA . . .
and pray I don’t
alter the deal
any further!

How do these ideas appear
in real hardware?

Our GPU: NVIDIA RTX 4000 Ada
(AD104 chip)

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

One “core” of our GPU

32 x 32-bit Exec. Units
(ALUs / vector lanes)

512 x 32 x 32-bit regs

1 warp instruction / clock
(32 lanes)

Up to 12 live threads
(independent warps)

(“warp scheduler”)

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

One “SM” is a cluster
of 4 warp schedulers

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

L2 Cache (48 MB)

Our whole GPU
48 SMs
x 4 = 192 cores
x32 = 6144 exec. units
@ 2.175 GHz
= 26.7 TFLOPS

192x12 = 2,304 threads

96k 1024-bit registers
= 12 MB
48 MB L2 cache

Our CPU: AMD Ryzen 7 7700

One core of our CPU
(AMD Zen 4)
Huge, complex control
logic (6-wide, OoO, …)

Two 256-bit vector ALUs
= 16 x 32-bit exec. units

192 vector registers

1 MB cache

2 “hyperthreads”

32 MB
L3 Cache

Our whole CPU
Zen 4
core

Zen 4
core

Zen 4
core

Zen 4
core

1 MB
L2

1 MB
L2

1 MB
L2

1 MB
L2

Zen 4
core

Zen 4
core

Zen 4
core

Zen 4
core

1 MB
L2

1 MB
L2

1 MB
L2

1 MB
L2

8 “Zen 4” cores
x 16 = 128 exec units
@ 3.8 ~ 5.5 GHz
= 0.97 ~ 1.4 TFLOPS

8 x 2 = 16 threads

1.5k 512-bit registers
= 24 KB
40 MB total L2+L3

48 SMs
x 4 = 192 cores
x32 = 6144 exec. units
@ 2.175 GHz
= 26.7 TFLOPS

192x12 = 2,304 threads

96k 1024-bit registers
= 12 MB
48 MB L2 cache

8 “Zen 4” cores
x 16 = 128 exec units
@ 3.8 ~ 5.3 GHz
= 0.97 ~ 1.4 TFLOPS

8 x 2 = 16 threads

1.5k 512-bit registers
= 24 KB
40 MB total L2+L3

Our CPU Our GPU

~200 mm2

/ 192 cores
= 1.05 mm2 / core

8x smaller

70 mm2
/ 8 cores
= 8.75 mm2

6-7x faster
on Mandelbrot

Our CPU Our GPU 294 mm2
(full die)

70 mm2
(CCD only)

A throughput processor
is still a processor!
(or actually, many of them)

But we need to change our
programs to use it efficiently
expose explicit parallelism
within & across instruction streams

