
6.S894
Accelerated Computing

Live Lab 5:
Matmul, part 2

Jonathan Ragan-Kelley

October 7, 2025

Overlapping
compute & I/O

Control
(Fetch & Decode)

Compute
(ALU)

Memory
(Load/Store)

Goal: fully utilize
both resources

Problem 1: load / store instructions are
asynchronous & long-latency

Solution 1: ILP
hoist loads early
to avoid blocking

ld	
fma	
ld	
fma	
ld	
fma	
…

ld	
ld	
ld	
fma	
fma	
fma	
…

Task 1

Stall

Runnable

Stall

Stall

Stall

Task 2

Task 3

Task 4

Task 1

Solution 2: multithreading
switch from tasks

blocked on memory
to one ready to

compute

Problem 2: load / store instructions
waste issue slots

ld.f32	
ld.f32	
ld.f32	
ld.f32	
fma	
fma	
fma	
fma	
…

ld.v4.f32	
fma	
fma	
fma	
fma	
…

Solution: bulk load /
store instructions

e.g.,“vectorized” ld / st

Problem 3: overlapping compute with
loading to the scratchpad

foreach tile:	
 // load into scratchpad	
 for i,j:	
 load next A,B → scratch	
 sync	
 // compute!	
 for i,j,k:	
 compute C += A*B	
 sync

Problem 3: overlapping compute with
loading to the scratchpad

Solution:
asynchronous fetch &
double-buffering

Compute
(ALU)

Memory
(Load/Store)

Tile i Tile i+1

foreach tile:	
 // load into scratchpad	
 for i,j:	
 load next A,B → scratch	
 sync	
 // compute!	
 for i,j,k:	
 compute C += A*B	
 sync

Problem 3: overlapping compute with
loading to the scratchpad

Solution:
asynchronous fetch &
double-buffering

Compute
(ALU)

Memory
(Load/Store)

Tile i Tile i+1

foreach tile:	
 // load into scratchpad	
 for i,j:	
 load next A,B → scratch	
 sync	
 // compute!	
 for i,j,k:	
 compute C += A*B	
 sync

Problem 3: overlapping compute with
loading to the scratchpad

Solution:
asynchronous fetch &
double-buffering

Compute
(ALU)

Memory
(Load/Store)

Tile i Tile i+1

Block 0 Block 1

Problem 3: overlapping compute with
loading to the scratchpad

if threadIdx.y < 4:	
 // load into scratchpad	
 for i,j:	
 load next A,B → scratch	
else:	
 // compute!	
 for i,j,k:	
 compute C += A*B	
sync & swap buffers…

Implementation approach:
warp specialization

Solution:
asynchronous fetch &
double-buffering

Compute
(ALU)

Memory
(Load/Store)

Tile i Tile i+1

Problem 3: overlapping compute with
loading to the scratchpad

Solution:
asynchronous fetch &
double-buffering

Compute
(ALU)

Memory
(Load/Store)

Tile i Tile i+1

Problem 3: overlapping compute with
loading to the scratchpad

foreach tile:	
 // load into scratchpad	
 for i,j:	
 async load next A,B → scratch	
 await previous tile load	
 // compute!	
 for i,j,k:	
 compute C += A*B	
 sync & swap buffers…

Implementation approach:
warp specialization

Solution:
asynchronous fetch &
double-buffering

Compute
(ALU)

Memory
(Load/Store)

Tile i Tile i+1

Problem 4: load to scratch wastes issue slots,
register file space & bandwidth

ld.global r1, [G]	
st.shared [S], r1	
…	
ld.shared r2, [S]

Alternative implementation:
async memcpy instructions

cp.async.shared.global \	
 [S], [G], 16	
…	
cp.async.wait_all	
ld.shared r2, [S]

Questions?

