
6.S894 
Accelerated Computing 

Lecture 5: Memory, 
Overlapping Compute & I/O

Jonathan Ragan-Kelley

October 2, 2025



L1 SRAM
128 KB per-SM 
( ⨉ 48 SMs = 6 MB ) 
 
128 bytes / cycle / SM 

 ⮑ 1 warp-wide ld/st 
       (Per-core: 1 every 4 cycles) 
 
⨉48 SMs ⨉ 2.18GHz = 13.4 TB/s

Warp Scheduler Warp Scheduler

Warp Scheduler Warp Scheduler

L1 SRAM 
128 KB capacity

SM (4 core cluster)



L1 SRAM: also used as explicit scratchpad

Address SpaceScratchpad

Each block (SM) only sees 
its own scratchpad



Tradeoffs: scratchpads vs. caches

+ No tag / lookup overhead 

+ Predictable / controllable 

+ No need for coherence 

+ Read >1 line / cycle

– Programming effort 

– Software depends on size



How is the L1 SRAM built? 
How can it deliver 128 B / cycle? Parallelism!

32 x 4 KB128 KB

32 ⨉ 4 Bytes / cycle

32 parallel “banks”      (addresses striped % 32 ⨉ 4 Bytes)



32 ⨉ 4 Bytes / cycle

32 ⨉ 4 Bytes / cycle

EU EU EU EU EU EU EU EU EU EU EU EU EU EU EU EU EU EU EU EU ……

gather

scatter



How can we handle gather/scatter 
in the L1 SRAM?

32 x 4 KB

???



How can we handle gather/scatter 
in the L1 SRAM? All-to-all crossbar!

32 x 4 KB

32 ⨉ 32 crossbar



L1 bank conflicts
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1 load / 
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high bandwidth 
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TB/sec
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1 op



Register file: parallel banks per-lane

32 x 2 KB 
Register File storage

no r[3] (or r[i]), only r3

only 16 do integer ops

explicit shfl instruction



32 x 2 KB 
Register File storage

32 ⨉ 32 crossbar

Data can be shuffled between lanes 
using the L1 crossbar

explicit shfl instruction
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DRAM 

streaming 
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large-scale reuse



Overlapping 
compute & I/O



Key facets of a processor: 
Control, Compute, Memory

Control 
(Fetch & Decode)

Compute 
(ALU)

Memory 
(Load/Store)

Goal: fully utilize 
both resources



Use compute & memory in parallel

Control 
(Fetch & Decode)

Compute 
(ALU)

Memory 
(Load/Store)

Goal: fully utilize 
both resources

Approach 1: “CPU-style” 
wide issue, out-of-order 
parallelism within instruction stream 
 
Approach 2: “GPU-style” 
multithreading 
parallelism across instruction streams



ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5
...

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5

Both strategies work for common workloads

Control 
(Fetch & Decode)

Compute 
(ALU)

Memory 
(Load/Store)

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5



What about workloads like 
matrix multiplication?

lots of 
reuse

load a 
bunch

compute 
a bunch

core loop

// load into scratchpad	
for i,j:	
  load A,B global → scratch	

for each microtile:	
  // load into registers	
  for i,k:	
    load A scratch → reg	
  for k,j:	
    load B scratch → reg	

  // compute!	
  for i,j,k:	
    compute C += A*B



How would a CPU execute this?

diagram by 
Chips & Cheese

Zen 4 
core



What about a throughput processor (GPU)?

‣ single issue 

‣ in-order 

‣ “RISC”

more manual & 
explicit management 
of overlapping
⮑ recurs at many 

levels



Problem 1: load / store instructions are 
asynchronous & long-latency

Solution 1: ILP 
hoist loads early 
to avoid blocking

ld	
fma	
ld	
fma	
ld	
fma	
…

ld	
ld	
ld	
fma	
fma	
fma	
…

Task 1

Stall

Runnable

Stall

Stall

Stall

Task 2

Task 3

Task 4

Task 1

Solution 2: multithreading
switch from tasks 

blocked on memory 
to one ready to 

compute



Problem 2: load / store instructions 
waste issue slots

ld.f32	
ld.f32	
ld.f32	
ld.f32	
fma	
fma	
fma	
fma	
…

ld.v4.f32	
fma	
fma	
fma	
fma	
…

Solution: bulk load / 
store instructions 

e.g.,“vectorized” ld / st



Problem 3: overlapping compute with 
loading to the scratchpad

Solution: 
asynchronous fetch & 
double-buffering

Compute 
(ALU)

Memory 
(Load/Store)

Buffer i Buffer i+1

if threadIdx.y < 4:	
  // load into scratchpad	
  for i,j:	
    load next A,B → scratch	
else:	
  // compute!	
  for i,j,k:	
    compute C += A*B	
sync & swap buffers…

Implementation approach: 
warp specialization


