
6.S894
Accelerated Computing

Lecture 5: Memory,
Overlapping Compute & I/O

Jonathan Ragan-Kelley

October 2, 2025

L1 SRAM
128 KB per-SM
(⨉ 48 SMs = 6 MB)

128 bytes / cycle / SM

 ⮑ 1 warp-wide ld/st
 (Per-core: 1 every 4 cycles)

⨉48 SMs ⨉ 2.18GHz = 13.4 TB/s

Warp Scheduler Warp Scheduler

Warp Scheduler Warp Scheduler

L1 SRAM
128 KB capacity

SM (4 core cluster)

L1 SRAM: also used as explicit scratchpad

Address SpaceScratchpad

Each block (SM) only sees
its own scratchpad

Tradeoffs: scratchpads vs. caches

+ No tag / lookup overhead

+ Predictable / controllable

+ No need for coherence

+ Read >1 line / cycle

– Programming effort

– Software depends on size

How is the L1 SRAM built?
How can it deliver 128 B / cycle? Parallelism!

32 x 4 KB128 KB

32 ⨉ 4 Bytes / cycle

32 parallel “banks” (addresses striped % 32 ⨉ 4 Bytes)

32 ⨉ 4 Bytes / cycle

32 ⨉ 4 Bytes / cycle

EU ……

gather

scatter

How can we handle gather/scatter
in the L1 SRAM?

32 x 4 KB

???

How can we handle gather/scatter
in the L1 SRAM? All-to-all crossbar!

32 x 4 KB

32 ⨉ 32 crossbar

L1 bank conflicts

L2
cache

(48 MB)

L1
SRAM
(6 MB)

Registers
(12 MB)

EUs
6144

GPU
Main

Memory
(20 GB)

high bandwidth,
limited capacity

high clocks &
wide interface

360
GB/sec

1 load /
150 ops

2.5
TB/sec

1 load /
20 ops

13.4
TB/sec

1 load /
4 ops

shared per-SM,
not coherent
high bandwidth
via banking

cache or
scratchpad

aggregate large
transactions for
DRAM

streaming
access

large-scale reuse

L2
cache

(48 MB)

L1
SRAM
(6 MB)

Registers
(12 MB)

EUs
6144

GPU
Main

Memory
(20 GB)

high bandwidth,
limited capacity

high clocks &
wide interface

360
GB/sec

1 load /
150 ops

2.5
TB/sec

1 load /
20 ops

aggregate large
transactions for
DRAM

streaming
access

large-scale reuse

13.4
TB/sec

1 load /
4 ops

shared per-SM,
not coherent
high bandwidth
via banking

cache or
scratchpad

>100
TB/sec

3 loads + 1 store /
1 op

Register file: parallel banks per-lane

32 x 2 KB
Register File storage

no r[3] (or r[i]), only r3

only 16 do integer ops

explicit shfl instruction

32 x 2 KB
Register File storage

32 ⨉ 32 crossbar

Data can be shuffled between lanes
using the L1 crossbar

explicit shfl instruction

L2
cache

(48 MB)

L1
SRAM
(6 MB)

Registers
(12 MB)

EUs
6144

GPU
Main

Memory
(20 GB)

high bandwidth,
limited capacity

high clocks &
wide interface

360
GB/sec

1 load /
150 ops

2.5
TB/sec

1 load /
20 ops

13.4
TB/sec

1 load /
4 ops

shared per-SM,
not coherent
high bandwidth
via banking

cache or
scratchpad

>100
TB/sec

3 loads + 1 store /
1 op

banked per-lane

no dynamic
indexing,
either across or
within lanes

“infinite” BW

aggregate large
transactions for
DRAM

streaming
access

large-scale reuse

Overlapping
compute & I/O

Key facets of a processor:
Control, Compute, Memory

Control
(Fetch & Decode)

Compute
(ALU)

Memory
(Load/Store)

Goal: fully utilize
both resources

Use compute & memory in parallel

Control
(Fetch & Decode)

Compute
(ALU)

Memory
(Load/Store)

Goal: fully utilize
both resources

Approach 1: “CPU-style”
wide issue, out-of-order
parallelism within instruction stream

Approach 2: “GPU-style”
multithreading
parallelism across instruction streams

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5
...

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5

Both strategies work for common workloads

Control
(Fetch & Decode)

Compute
(ALU)

Memory
(Load/Store)

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5

ld r3, mem[r0+r2]
ld r4, mem[r1+r2]
mul r3, r3, r4
add r5, r5, r3
addi r2, r2, 4
blt r2, $400, LOOP
st addr[r6], r5

What about workloads like
matrix multiplication?

lots of
reuse

load a
bunch

compute
a bunch

core loop

// load into scratchpad	
for i,j:	
 load A,B global → scratch	

for each microtile:	
 // load into registers	
 for i,k:	
 load A scratch → reg	
 for k,j:	
 load B scratch → reg	

 // compute!	
 for i,j,k:	
 compute C += A*B

How would a CPU execute this?

diagram by
Chips & Cheese

Zen 4
core

What about a throughput processor (GPU)?

‣ single issue

‣ in-order

‣ “RISC”

more manual &
explicit management
of overlapping
⮑ recurs at many

levels

Problem 1: load / store instructions are
asynchronous & long-latency

Solution 1: ILP
hoist loads early
to avoid blocking

ld	
fma	
ld	
fma	
ld	
fma	
…

ld	
ld	
ld	
fma	
fma	
fma	
…

Task 1

Stall

Runnable

Stall

Stall

Stall

Task 2

Task 3

Task 4

Task 1

Solution 2: multithreading
switch from tasks

blocked on memory
to one ready to

compute

Problem 2: load / store instructions
waste issue slots

ld.f32	
ld.f32	
ld.f32	
ld.f32	
fma	
fma	
fma	
fma	
…

ld.v4.f32	
fma	
fma	
fma	
fma	
…

Solution: bulk load /
store instructions

e.g.,“vectorized” ld / st

Problem 3: overlapping compute with
loading to the scratchpad

Solution:
asynchronous fetch &
double-buffering

Compute
(ALU)

Memory
(Load/Store)

Buffer i Buffer i+1

if threadIdx.y < 4:	
 // load into scratchpad	
 for i,j:	
 load next A,B → scratch	
else:	
 // compute!	
 for i,j,k:	
 compute C += A*B	
sync & swap buffers…

Implementation approach:
warp specialization

