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host → GPU

memcopy

GPU → host

memcopy

compute

kernel launch

gpu_memcpy_host_device(cpu_buf, gpu_buf);	

gpu_memcpy_device_host(gpu_buf, cpu_buf);
gpu_launch(my_kernel, my_kernel_params);

How do GPU ↔ Host copies happen? 
Does it use the processor cores (SMs)?

my_kernel<<<blocks, threads>>>(args…);

CPU code:



How do GPU ↔ Host copies happen? 
Does it use the processor cores (SMs)?

host → GPU

memcopy

GPU → host

memcopy

compute

kernel launch

No! 
Dedicated DMA 
can run fully in parallel 
with kernel computation



How does it synchronize these operations?

host → GPU

memcopy

GPU → host

memcopy

compute

kernel launch

implicit 
barrier

implicit 
barrier



How can we overlap 
implicitly-ordered operations?

host → GPU

memcopy

GPU → host

memcopy

compute

kernel launch

implicit 
barrier

implicit 
barriercommand 

queue



Multiple command queues (“streams”) 
allow parallelism & overlapping

host → GPU

memcopy

GPU → host

memcopy

compute

kernel launch

command 
queue

host → GPU

memcopy

GPU → host

memcopy

compute

kernel launch

command 
queue

host → GPU

memcopy

compute

kernel launch

command 
queue

parallel execution

stream 1

stream 2

stream 3

each stream needs 
its own buffers 
to run concurrently



Overlapping compute & 
data movement is 
essential for performance

Common design patterns (double 
buffering, async DMA…)

Recurs at all levels of memory hierarchy 
and in many different accelerators
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Throughput processor eliminates 
most control overhead
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Throughput processor eliminates 
most control overhead

⮑ most silicon goes to 
useful work

What about energy?

Fetch & Decode
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Off-chip DRAM 
(GBs)

Data from Bill Dally 
14nm foundry process

On-chip SRAM 
(MBs)

Local SRAM 
(KBs)

LPDDR

SoC 
(~100mm2)

ALU 
(32-bit FMA)

640 pJ / word (32-bits)

50 pJ / word

5 pJ / word

1.2 pJ / FLOP

3.2 pJ / word-mm

Moving data 
on-chip:



Data from Bill Dally 
14nm foundry process



Data from Bill Dally 
14nm foundry process

32-bit 
FMA

5 pJ / FLOP64-bit 
FMA

1.2 pJ / FLOP

0.26 pJ / OP16-bit 
IMUL

0.01 pJ / OP8-bit 
IADD



Data from Bill Dally 
14nm foundry process

Operation Energy

Load from DRAM 640 pJ

Load from large SRAM 50 pJ

Move 10mm across chip 32 pJ

Load from local SRAM 5 pJ

64-bit FMA 5 pJ

32-bit FMA 1.2 pJ

16-bit IMUL 0.26 pJ

8-bit IADD 0.01 pJ

Data movement

Compute
100⨉

Cost for loading 
a 32-bit word



Data supply dwarfs computation 
for primitive ALU operations 

Operation
Data Supply 
Overhead

64-bit FMA 72%

32-bit FMA 84%

16-bit FMA 91%

8-bit IMAC 96%

32-bit IADD 99% Assuming register file access 
costs 1.2 pJ / 32-bit word

To be efficient, we 
need to reduce 
data supply cost



Amortize data-supply with more 
complex instructions

Reg ALU RegPrimitive op: 
(“RISC”)

Complex op: 
(“CISC++”)

Reg ALU RegALU ALU…

e.g., AES, video encode/decode, 
DSP, texture filtering, …

“ASIC-in-an-
Instruction”



CISC: x86 memory operands
Perform FMA operation: zmm2 += zmm0 * [memory]	
vfmadd231ps zmm2, zmm0, [rax + rcx*4 + 0x1234]

base + index ⨉ scale + displacement



Complex memory operations

Qualcomm Hexagon 
DSP / NPU

l2fetch *base, width,	
         height, stride

80-N2040-53 Rev. AB 86

Qualcomm Hexagon V73 Programmer’s Reference Manual Memory

The status of the current prefetch operation is maintained in the PFA field of the user status 
register. This field can determine whether a prefetch operation is complete.

With respect to MMU permissions and error checking, the l2fetch instruction behaves similarly to 
a load instruction. If the virtual address causes a processor exception, the exception is taken. This 
differs from the dcfetch instruction, which is treated as a NOP in the presence of a 
translation/protection error.

NOTE: Prefetches are dropped when the generated prefetch address resides on a different page than the 
start address. The programmer must use sufficiently large pages to ensure that this does not 
occur.

Figure 5-2 shows two examples of using the l2fetch instruction. The first shows a box prefetch, 
where a 2D range of memory is defined within a larger frame. The second example shows a 
prefetch for a large linear memory area of size (Lines * 128).

Figure 5-2  L2fetch instruction
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Complex memory operations

Qualcomm Hexagon 
DSP / NPU

l2fetch *base, width,	
         height, stride
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translation/protection error.

NOTE: Prefetches are dropped when the generated prefetch address resides on a different page than the 
start address. The programmer must use sufficiently large pages to ensure that this does not 
occur.

Figure 5-2 shows two examples of using the l2fetch instruction. The first shows a box prefetch, 
where a 2D range of memory is defined within a larger frame. The second example shows a 
prefetch for a large linear memory area of size (Lines * 128).
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NVIDIA H100 
Tensor Memory Accelerator

cp.async
→ cp.async.bulk.tensor



Texture mapping

One instruction: 
• computes many addresses 
• loads 
• blends results

Figs by Akeley, Hanrahan, Fatahalian



The quintessential complex instruction: 
Matrix block multiply accumulate

Examples: 
ARM SME 
AVX VNNI 
Intel AMX 
Google TPU 
Neural Engine 
Hexagon NPU 
…

One instruction!



Tensor Cores 
MMA on NVIDIA GPUs

Ampere GPU Architecture In-Depth 

 

NVIDIA Ampere GA102 GPU Architecture 12 

 

 
Figure 3. GA10x Streaming Multiprocessor (SM) 

2x FP32 Throughput 
In the Turing generation, each of the four SM processing blocks (also called partitions) had two 
primary datapaths, but only one of the two could process FP32 operations. The other datapath 
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling 
the peak processing rate for FP32 operations. One datapath in each partition consists of 16 

PTX: 
mma.sync.aligned.m16n8k8

Hardware (SASS): 
HMMA.1688.F32.TF32

•+= 16

8

8

16

8

8512B 512B 256B



MMA operands packed into registers

+= ⨉AC B









Tensor Cores 
MMA on NVIDIA GPUs

1 instruction 
10 register operands 
2048 FLOPs / 8 cycles

Ampere GPU Architecture In-Depth 
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Figure 3. GA10x Streaming Multiprocessor (SM) 

2x FP32 Throughput 
In the Turing generation, each of the four SM processing blocks (also called partitions) had two 
primary datapaths, but only one of the two could process FP32 operations. The other datapath 
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling 
the peak processing rate for FP32 operations. One datapath in each partition consists of 16 



MMA instructions 
amortize energy overhead

Instruction Ops
Control & data 

overhead
HMMA  
(fp16) 128 19%

IMMA 
(int 8) 1024 12%

NVIDIA Tensor Cores
data from Bill Dally

H100 
Vector: 67 TF 
MMA: 990 TF 

Vector <7% peak



Matrix multiply has high arithmetic intensity

work (ops)
data (bytes)

arithmetic intensity = 

n

n

•

n

+= 2n3FLOPS:
3n2Entries:

⮑ ratio grows 
with n



Arithmetic intensity is what 
makes matrix multiply special

All “acceleratable computations” 
have high arithmetic intensity



Questions?


