
Overlapping
compute & I/O

Host
Main

Memory

GPU
Main

Memory

L2
cache

L1
SRAM Registers EUs

Host
Main

Memory

GPU
Main

Memory

L2
cache

L1
SRAM Registers EUs

?

host → GPU

memcopy

GPU → host

memcopy

compute

kernel launch

gpu_memcpy_host_device(cpu_buf, gpu_buf);	

gpu_memcpy_device_host(gpu_buf, cpu_buf);
gpu_launch(my_kernel, my_kernel_params);

How do GPU ↔ Host copies happen?
Does it use the processor cores (SMs)?

my_kernel<<<blocks, threads>>>(args…);

CPU code:

How do GPU ↔ Host copies happen?
Does it use the processor cores (SMs)?

host → GPU

memcopy

GPU → host

memcopy

compute

kernel launch

No!
Dedicated DMA
can run fully in parallel
with kernel computation

How does it synchronize these operations?

host → GPU

memcopy

GPU → host

memcopy

compute

kernel launch

implicit
barrier

implicit
barrier

How can we overlap
implicitly-ordered operations?

host → GPU

memcopy

GPU → host

memcopy

compute

kernel launch

implicit
barrier

implicit
barriercommand

queue

Multiple command queues (“streams”)
allow parallelism & overlapping

host → GPU

memcopy

GPU → host

memcopy

compute

kernel launch

command
queue

host → GPU

memcopy

GPU → host

memcopy

compute

kernel launch

command
queue

host → GPU

memcopy

compute

kernel launch

command
queue

parallel execution

stream 1

stream 2

stream 3

each stream needs
its own buffers
to run concurrently

Overlapping compute &
data movement is
essential for performance

Common design patterns (double
buffering, async DMA…)

Recurs at all levels of memory hierarchy
and in many different accelerators

6.S894
Accelerated Computing

Lecture 6: Energy &
Specialization

Jonathan Ragan-Kelley

October 9, 2025

Throughput processor eliminates
most control overhead

Fetch & Decode

ALU
1

ALU
2

ALU
3

ALU
4

ALU
5

ALU
6

ALU
7

ALU
8

State State State State

State State State State

Program State

Fetch & Decode

Exec

Huge Caches

Out-of-Order Control

Fancy Branch Predictor

Memory Prefetcher

Throughput processor eliminates
most control overhead

⮑ most silicon goes to
useful work

What about energy?

Fetch & Decode

ALU
1

ALU
2

ALU
3

ALU
4

ALU
5

ALU
6

ALU
7

ALU
8

State State State State

State State State State

Off-chip DRAM
(GBs)

Data from Bill Dally
14nm foundry process

On-chip SRAM
(MBs)

Local SRAM
(KBs)

LPDDR

SoC
(~100mm2)

ALU
(32-bit FMA)

640 pJ / word (32-bits)

50 pJ / word

5 pJ / word

1.2 pJ / FLOP

3.2 pJ / word-mm

Moving data
on-chip:

Data from Bill Dally
14nm foundry process

Data from Bill Dally
14nm foundry process

32-bit
FMA

5 pJ / FLOP64-bit
FMA

1.2 pJ / FLOP

0.26 pJ / OP16-bit
IMUL

0.01 pJ / OP8-bit
IADD

Data from Bill Dally
14nm foundry process

Operation Energy

Load from DRAM 640 pJ

Load from large SRAM 50 pJ

Move 10mm across chip 32 pJ

Load from local SRAM 5 pJ

64-bit FMA 5 pJ

32-bit FMA 1.2 pJ

16-bit IMUL 0.26 pJ

8-bit IADD 0.01 pJ

Data movement

Compute
100⨉

Cost for loading
a 32-bit word

Data supply dwarfs computation
for primitive ALU operations

Operation
Data Supply
Overhead

64-bit FMA 72%

32-bit FMA 84%

16-bit FMA 91%

8-bit IMAC 96%

32-bit IADD 99% Assuming register file access
costs 1.2 pJ / 32-bit word

To be efficient, we
need to reduce
data supply cost

Amortize data-supply with more
complex instructions

Reg ALU RegPrimitive op:
(“RISC”)

Complex op:
(“CISC++”)

Reg ALU RegALU ALU…

e.g., AES, video encode/decode,
DSP, texture filtering, …

“ASIC-in-an-
Instruction”

CISC: x86 memory operands
Perform FMA operation: zmm2 += zmm0 * [memory]	
vfmadd231ps zmm2, zmm0, [rax + rcx*4 + 0x1234]

base + index ⨉ scale + displacement

Complex memory operations

Qualcomm Hexagon
DSP / NPU

l2fetch *base, width,	
 height, stride

80-N2040-53 Rev. AB 86

Qualcomm Hexagon V73 Programmer’s Reference Manual Memory

The status of the current prefetch operation is maintained in the PFA field of the user status
register. This field can determine whether a prefetch operation is complete.

With respect to MMU permissions and error checking, the l2fetch instruction behaves similarly to
a load instruction. If the virtual address causes a processor exception, the exception is taken. This
differs from the dcfetch instruction, which is treated as a NOP in the presence of a
translation/protection error.

NOTE: Prefetches are dropped when the generated prefetch address resides on a different page than the
start address. The programmer must use sufficiently large pages to ensure that this does not
occur.

Figure 5-2 shows two examples of using the l2fetch instruction. The first shows a box prefetch,
where a 2D range of memory is defined within a larger frame. The second example shows a
prefetch for a large linear memory area of size (Lines * 128).

Figure 5-2 L2fetch instruction

Start Address

Stride

Rs

Stride

L2FETCH for box prefetch

Prefetch
Area

Width

Height

Width HeightRt

Start Address

128

Rs

L2FETCH for large linear prefetch

128 LinesRt

078151631 078151631

128* Lines

Complex memory operations

Qualcomm Hexagon
DSP / NPU

l2fetch *base, width,	
 height, stride

80-N2040-53 Rev. AB 86

Qualcomm Hexagon V73 Programmer’s Reference Manual Memory

The status of the current prefetch operation is maintained in the PFA field of the user status
register. This field can determine whether a prefetch operation is complete.

With respect to MMU permissions and error checking, the l2fetch instruction behaves similarly to
a load instruction. If the virtual address causes a processor exception, the exception is taken. This
differs from the dcfetch instruction, which is treated as a NOP in the presence of a
translation/protection error.

NOTE: Prefetches are dropped when the generated prefetch address resides on a different page than the
start address. The programmer must use sufficiently large pages to ensure that this does not
occur.

Figure 5-2 shows two examples of using the l2fetch instruction. The first shows a box prefetch,
where a 2D range of memory is defined within a larger frame. The second example shows a
prefetch for a large linear memory area of size (Lines * 128).

Figure 5-2 L2fetch instruction

Start Address

Stride

Rs

Stride

L2FETCH for box prefetch

Prefetch
Area

Width

Height

Width HeightRt

Start Address

128

Rs

L2FETCH for large linear prefetch

128 LinesRt

078151631 078151631

128* Lines

NVIDIA H100
Tensor Memory Accelerator

cp.async
→ cp.async.bulk.tensor

Texture mapping

One instruction:
• computes many addresses
• loads
• blends results

Figs by Akeley, Hanrahan, Fatahalian

The quintessential complex instruction:
Matrix block multiply accumulate

Examples:
ARM SME
AVX VNNI
Intel AMX
Google TPU
Neural Engine
Hexagon NPU
…

One instruction!

Tensor Cores
MMA on NVIDIA GPUs

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

PTX:
mma.sync.aligned.m16n8k8

Hardware (SASS):
HMMA.1688.F32.TF32

•+= 16

8

8

16

8

8512B 512B 256B

MMA operands packed into registers

+= ⨉AC B

Tensor Cores
MMA on NVIDIA GPUs

1 instruction
10 register operands
2048 FLOPs / 8 cycles

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 12

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

MMA instructions
amortize energy overhead

Instruction Ops
Control & data

overhead
HMMA
(fp16) 128 19%

IMMA
(int 8) 1024 12%

NVIDIA Tensor Cores
data from Bill Dally

H100
Vector: 67 TF
MMA: 990 TF

Vector <7% peak

Matrix multiply has high arithmetic intensity

work (ops)
data (bytes)

arithmetic intensity =

n

n

•

n

+= 2n3FLOPS:
3n2Entries:

⮑ ratio grows
with n

Arithmetic intensity is what
makes matrix multiply special

All “acceleratable computations”
have high arithmetic intensity

Questions?

