
Primitives

Ahmed Mahmoud

October 16, 2025

Lecture 7: Data-Parallel

My work: irregular computation

MeshesSparse Matrices Graphs

Outline:

• Thinking in “data-parallel patterns”

• Overview of data-parallel primitives
• Map

• Stencil

• Reduce

• Scan

• Compaction

• Merge

Main idea: high-performance parallel
implementations of data-parallel primitives
exist, allowing programs written with these
primitives to run efficiently on the GPU.

How bumpy is a surface?

Steps:

1. For each node, compute the difference between the node's height and the
average height of its neighbors, then square that difference

2. Sum up all those differences
• Don’t sum all the differences that are zero

(Note: This is a fake application!)

Algorithm
result = 0

for all nodes:

average =

0.25 * (height[x - 1, y] +

height[x + 1, y] +

height[x , y - 1] +

height[x , y + 1])

diff[x, y] = (height[x, y] - average)^2

Algorithm
result = 0

for all nodes:

average =

0.25 * (height[x - 1, y] +

height[x + 1, y] +

height[x , y - 1] +

height[x , y + 1])

diff[x, y] = (height[x, y] - average)^2

for all nodes where diff !=0:

result += diff

return result

Algorithm
result = 0

for all nodes:

average =

0.25 * (height[x - 1, y] +

height[x + 1, y] +

height[x , y - 1] +

height[x , y + 1])

diff[x, y] = (height[x, y] - average)^2

for all nodes where diff !=0:

result += diff

return result

Pattern #1: Map

Given:

• Sequence of data elements A

• Unary function f(x)

 map(A,f) = applies f(x) to all ai∈A

Algorithm
result = 0

for all nodes:

average =

0.25 * (height[x - 1, y] +

height[x + 1, y] +

height[x , y - 1] +

height[x , y + 1])

diff[x, y] = (height[x, y] - average)^2

for all nodes where diff !=0:

result += diff

return result

Pattern #2: Stencil

Given an input sequence a and a range I, stencil produces an
output sequence p such that

p = a[I]

Pattern #2: Stencil

Given an input sequence a and a range I, stencil produces an
output sequence p such that

p = a[I]

Scatter Gather

Pattern #2: Stencil

Particles-to-grid (P2G)

Pattern #2: Stencil

Particles-to-grid (P2G)

1. Gather: Each cell collects information from the
particles within it

Pattern #2: Stencil

Particles-to-grid (P2G)

1. Gather: Each cell collects information from the
particles within it

• Needs to collect particles in each cell

• Different number of particles per cell

• Many empty cells

• Workload imbalance

Pattern #2: Stencil

Particles-to-grid (P2G)

1. Gather: Each cell collects information from the
particles within it

• Needs to collect particles in each cell

• Different number of particles per cell

• Many empty cells

• Workload imbalance

2. Scatter: Each particle distributes information to
the cell it belongs to

• Needs synchronization (e.g., atomics)

Gao, Wang, Wu, Pradhana, Sifakis, Yuksel, and Jiang. 2018.
GPU optimization of material point methods.
ACM Transactions on Graphics.

Algorithm
result = 0

for all nodes:

average =

0.25 * (height[x - 1, y] +

height[x + 1, y] +

height[x , y - 1] +

height[x , y + 1])

diff[x, y] = (height[x, y] - average)^2

for all nodes where diff !=0:

result += diff

return result

Pattern #3: Reduce

Given a sequence of input S = [a0, a1, …, an-1] and a binary associative and
commutative operator ⊕ (e.g., +, *, min, max)

 Reduce(⊕, S) = a0 ⊕ a1 ⊕ … ⊕ an-1

3.4 4.1 7.6 2.4 8.7 1.9 4.2

+

32.3

Pattern #3: Reduce

Given a sequence of input S = [a0, a1, …, an-1] and a binary associative and
commutative operator ⊕ (e.g., +, *, min, max)

 Reduce(⊕, S) = a0 ⊕ a1 ⊕ … ⊕ an-1

3.4 4.1 7.6 2.4 8.7 1.9 4.2

+

32.3

Associative: (a0⊕a1)⊕a2 =a0⊕ (a1⊕a2)

Commutative: a0⊕a1 = a1⊕a0

Pattern #3: Reduce

Work efficiency:

The total amount of work done over by all processors

Pattern #3: Reduce

Work efficiency:

The total amount of work done over by all processors

Step efficiency:

The number of steps it takes to do that work

Pattern #3: Reduce

• Parallel Reduction
- Add two halves of domain
together repeatedly

Pattern #3: Reduce

• Parallel Reduction
- Add two halves of domain
together repeatedly

Pattern #3: Reduce

• Parallel Reduction
- Add two halves of domain
together repeatedly

Pattern #3: Reduce

• Parallel Reduction
- Add two halves of domain
together repeatedly

O(log2N) Steps
 O(N) Work

Pattern #3: Reduce

• Parallel Reduction

- log(N) parallel steps, each step S does N/2S independent ops
- Step complexity is O(log2 N)

- Performs N/2+ N /4+…+1= N -1 operations
- Work complexity is O(N)

- It is work-efficient, i.e., does not perform more operations than a sequential
algorithm

Pattern #3: Reduce

• Parallel Reduction Kernel

Pattern #3: Reduce

• Improve memory accesses

Pattern #3: Reduce

• Minimize global memory accesses

Global Memory

Shared Memory

Pattern #3: Reduce

• Thread coarsening to reduce overhead

Global Memory

Shared Memory

no sync

Algorithm
result = 0

for all quads:

average =

0.25 * (height[x - 1, y] +

height[x + 1, y] +

height[x , y - 1] +

height[x , y + 1])

diff[x, y] = (height[x, y] - average)^2

for all nodes where diff !=0:

result += diff

return result

Pattern #4: Stream Compaction

Given an input sequence S and a predicate P,
output another sequence T that only contains
elements that satisfy the predicate

A B C D E F G H

A C D G

S =

T=

Pattern #4: Stream Compaction

A B C D E F G H

1 0 1 1 0 0 1 0

Input

Predicate Array

Pattern #4: Stream Compaction

A B C D E F G H

1 0 1 1 0 0 1 0

0 1 1 2 3 3 3 4

Input

Predicate Array

“Sum up all
elements before me”

Pattern #4: Stream Compaction

A B C D E F G H

A C D G

1 0 1 1 0 0 1 0

0 1 1 2 3 3 3 4

Input

Predicate Array

“Sum up all
elements before me”

Scatter addresses
for true elements

“Where do I write my output?”

“Where do I write my output?”

- The answer is:
“That depends on how much the other threads need to write!”

“Where do I write my output?”

- The answer is:
“That depends on how much the other threads need to write!”

- Scan is an efficient way to answer this question in parallel

- Examples: marching cubes, collision detection, sorting,
building trees

Pattern #5: Scan

Given a sequence of input S = [a0, a1, …, an-1] and a binary
associative operator ⊕ with identity I

 Scan(S, ⊕, I) = [I, a0, a0 ⊕ a1, … , (a0 ⊕ a1 … ⊕ an-2)]

When ⊕ is addition, this corresponds to the prefix sum

3 1 7 0 4 1 6 3

0 3 4 11 11 15 16 22

Input

Scan

Pattern #5: Scan

Example for when ⊕ is addition, i.e., prefix sum

3 1 7 0 4 1 6 3

0 3 4 11 11 15 16 22

Input

Exclusive
Scan

Pattern #5: Scan

Example for when ⊕ is addition, i.e., prefix sum

3 1 7 0 4 1 6 3

0 3 4 11 11 15 16 22

3 4 11 11 15 16 22 25

Input

Exclusive
Scan

Inclusive
Scan

Pattern #5: Scan

Sequential implementation
- N additions needed for N elements—O(N)

y[0] = x[0]

for (i=1; i<len; ++i)

y[i] = y[i-1] + x[i]

Input [x0, x1, x2, ….]

Output [y0, y1, y2,….]

Such that

 y0 = x0

 y1 = x0 + x1

 y2 = x0 + x1 + x2

 …

Pattern #5: Scan

Pattern #5: Scan

iter 0, stride 20

Pattern #5: Scan

iter 1, stride 21

Pattern #5: Scan

iter 2, stride 22

Pattern #5: Scan

• Kogge-Stone algorithm

O(log2N) Steps
O(N log2N) Work

Step efficient

Not work efficient

Pattern #5: Scan

• Kogge-Stone algorithm

Pattern #5: Scan

x0 x1 x2 x3 x4 x5 x6 x7

Up-sweep Phase

iter = 0

(tid+1)%21 == 0

stride = 20

Pattern #5: Scan

x0 x1 x2 x3 x4 x5 x6 x7

x0 x0...x1 x2 x2...x3 x4 x4...x5 x6 x6...x7

Up-sweep Phase

iter = 0

(tid+1)%21 == 0

stride = 20

Pattern #5: Scan

x0 x1 x2 x3 x4 x5 x6 x7

x0 x0...x1 x2 x2...x3 x4 x4...x5 x6 x6...x7

x0 x0...x1 x2 x0...x3 x4 x4...x5 x6 x4...x7

Up-sweep Phase

iter = 1

(tid+1)%22 == 0

stride = 21

Pattern #5: Scan

x0 x1 x2 x3 x4 x5 x6 x7

x0 x0...x1 x2 x0...x3 x4 x4...x5 x6 x0...x7

x0 x0...x1 x2 x2...x3 x4 x4...x5 x6 x6...x7

x0 x0...x1 x2 x0...x3 x4 x4...x5 x6 x4...x7

Up-sweep Phase

iter = 2

(tid+1)%23 == 0

stride = 22

Pattern #5: Scan

x0 x1 x2 x3 x4 x5 x6 x7

x0 x0...x1 x2 x0...x3 x4 x4...x5 x6 x0...x7

x0 x0...x1 x2 x2...x3 x4 x4...x5 x6 x6...x7

x0 x0...x1 x2 x0...x3 x4 x4...x5 x6 x4...x7 x0 x0...x1 x2 x0...x3 x4 x4...x5 x6 x0...x7

Up-sweep Phase

Down-sweep Phase

Pattern #5: Scan

x0 x1 x2 x3 x4 x5 x6 x7

x0 x0...x1 x2 x0...x3 x4 x4...x5 x6 x0...x7

x0 x0...x1 x2 x2...x3 x4 x4...x5 x6 x6...x7

x0 x0...x1 x2 x0...x3 x4 x4...x5 x6 x4...x7 x0 x0...x1 x2 x0...x3 x4 x4...x5 x6 x0...x7

x0 x0...x1 x2 x0...x3 x4 x0...x5 x6 x0...x7

Up-sweep Phase

Down-sweep Phase

Pattern #5: Scan

x0 x1 x2 x3 x4 x5 x6 x7

x0 x0...x1 x2 x0...x3 x4 x4...x5 x6 x0...x7

x0 x0...x1 x2 x2...x3 x4 x4...x5 x6 x6...x7

x0 x0...x1 x2 x0...x3 x4 x4...x5 x6 x4...x7 x0 x0...x1 x2 x0...x3 x4 x4...x5 x6 x0...x7

x0 x0...x1 x2 x0...x3 x4 x0...x5 x6 x0...x7

x0 x0...x1 x0...x2 x0...x3 x0...x4 x0...x5 x0...x6 x0...x7

Up-sweep Phase

Down-sweep Phase

Pattern #5: Scan

• Brent-Kung algorithm

x0 x1 x2 x3 x4 x5 x6 x7

x0 x0...x1 x2 x0...x3 x4 x4...x5 x6 x0...x7

x0 x0...x1 x2 x2...x3 x4 x4...x5 x6 x6...x7

x0 x0...x1 x2 x0...x3 x4 x4...x5 x6 x4...x7 x0 x0...x1 x2 x0...x3 x4 x4...x5 x6 x0...x7

x0 x0...x1 x2 x0...x3 x4 x0...x5 x6 x0...x7

x0 x0...x1 x0...x2 x0...x3 x0...x4 x0...x5 x0...x6 x0...x7

Pattern #5: Scan

• Improve work efficiency by reusing of computation results

O(log2N) Steps
O(N) Work

Back to Stream Compaction

A B C D E F G H

A C D G

1 0 1 1 0 0 1 0

0 1 1 2 3 3 3 4

Input

Predicate Array

“Sum up all
elements before me”

Scatter addresses
for true elements

Pattern #5: Scan

Scan across blocks
• Scan-and-add strategy

Pattern #5: Scan

Scan across blocks
• Scan-and-add strategy

Pattern #5: Scan

Scan across blocks
• Scan-and-add strategy

Pattern #5: Scan

Scan across blocks
• Scan-and-add strategy

Block 0 Block 1 Block 2 Block 3

Pattern #5: Scan

Scan across blocks
• Scan-and-add strategy (4n read/write)

Pattern #5: Scan

Scan across blocks
• Reduce-then-scan strategy (3n read/write)

Merrill, Garland
Single-pass Parallel Prefix Scan with Decoupled Look-back.
2013

Questions?!

Credits:

This lecture is primarily derived from:

• John Owens’s course on Modern Parallel Computing (EEC 289Q, UC Davis, Winter 2018)

• Kayvon Fatahalian‘s course on Parallel Computing (CS149, Stanford, Fall 2023)

• Programming Massively Parallel Processors - A Hands-on Approach book, 4th edition by
Wen-mei W. Hwu, David B. Kirk, and Izzat El Hajj, 2023

Pattern #5: Scan

Scan across blocks
• Decoupled look-back

Merrill, Garland
Single-pass Parallel Prefix Scan with Decoupled Look-back.
2013

	Slide 1
	Slide 2
	Slide 3: Outline:
	Slide 4
	Slide 5: How bumpy is a surface?
	Slide 6: Algorithm
	Slide 7: Algorithm
	Slide 8: Algorithm
	Slide 9: Pattern #1: Map
	Slide 10: Algorithm
	Slide 11: Pattern #2: Stencil
	Slide 12: Pattern #2: Stencil
	Slide 13: Pattern #2: Stencil
	Slide 14: Pattern #2: Stencil
	Slide 15: Pattern #2: Stencil
	Slide 16: Pattern #2: Stencil
	Slide 17: Algorithm
	Slide 18: Pattern #3: Reduce
	Slide 19: Pattern #3: Reduce
	Slide 20: Pattern #3: Reduce
	Slide 21: Pattern #3: Reduce
	Slide 22: Pattern #3: Reduce
	Slide 23: Pattern #3: Reduce
	Slide 24: Pattern #3: Reduce
	Slide 25: Pattern #3: Reduce
	Slide 26: Pattern #3: Reduce
	Slide 27: Pattern #3: Reduce
	Slide 28: Pattern #3: Reduce
	Slide 29: Pattern #3: Reduce
	Slide 30: Pattern #3: Reduce
	Slide 31: Algorithm
	Slide 32: Pattern #4: Stream Compaction
	Slide 33: Pattern #4: Stream Compaction
	Slide 34: Pattern #4: Stream Compaction
	Slide 35: Pattern #4: Stream Compaction
	Slide 36: “Where do I write my output?”
	Slide 37: “Where do I write my output?”
	Slide 38: “Where do I write my output?”
	Slide 39: Pattern #5: Scan
	Slide 40: Pattern #5: Scan
	Slide 41: Pattern #5: Scan
	Slide 42: Pattern #5: Scan
	Slide 43: Pattern #5: Scan
	Slide 44: Pattern #5: Scan
	Slide 45: Pattern #5: Scan
	Slide 46: Pattern #5: Scan
	Slide 47: Pattern #5: Scan
	Slide 48: Pattern #5: Scan
	Slide 49: Pattern #5: Scan
	Slide 50: Pattern #5: Scan
	Slide 51: Pattern #5: Scan
	Slide 52: Pattern #5: Scan
	Slide 53: Pattern #5: Scan
	Slide 54: Pattern #5: Scan
	Slide 55: Pattern #5: Scan
	Slide 56: Pattern #5: Scan
	Slide 57: Pattern #5: Scan
	Slide 58: Back to Stream Compaction
	Slide 59: Pattern #5: Scan
	Slide 60: Pattern #5: Scan
	Slide 61: Pattern #5: Scan
	Slide 62: Pattern #5: Scan
	Slide 63: Pattern #5: Scan
	Slide 64: Pattern #5: Scan
	Slide 65: Questions?!
	Slide 66
	Slide 67: Pattern #5: Scan

