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My work: irregular computation 

MeshesSparse Matrices Graphs



Outline:

• Thinking in “data-parallel patterns”

• Overview of data-parallel primitives
• Map

• Stencil 

• Reduce 

• Scan 

• Compaction 

• Merge 



Main idea: high-performance parallel 
implementations of data-parallel primitives 
exist, allowing programs written with these 
primitives to run efficiently on the GPU.



How bumpy is a surface? 

Steps:

1. For each node, compute the difference between the node's height and the 
average height of its neighbors, then square that difference

2. Sum up all those differences 
• Don’t sum all the differences that are zero 

(Note: This is a fake application!)



Algorithm
result = 0

for all nodes:

average =

0.25 * (height[x - 1, y    ] +

height[x + 1, y    ] + 

height[x    , y - 1] + 

height[x    , y + 1] )

diff[x, y] = (height[x, y] - average)^2
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Pattern #1: Map

Given: 

• Sequence of data elements A

• Unary function f(x)

 map(A,f) = applies f(x) to all ai∈A



Algorithm
result = 0
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average =
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return result



Pattern #2: Stencil 

Given an input sequence a and a range I, stencil produces an 
output sequence p such that

p = a[I]



Pattern #2: Stencil 

Given an input sequence a and a range I, stencil produces an 
output sequence p such that

p = a[I]

Scatter Gather
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Pattern #2: Stencil 

Particles-to-grid (P2G)

1.  Gather: Each cell collects information from the 
particles within it

• Needs to collect particles in each cell

• Different number of particles per cell 

• Many empty cells

• Workload imbalance  

2.  Scatter: Each particle distributes information to 
the cell it belongs to

• Needs synchronization (e.g., atomics)

Gao, Wang, Wu, Pradhana, Sifakis, Yuksel, and Jiang. 2018. 
GPU optimization of material point methods. 
ACM Transactions on Graphics.
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average =

0.25 * (height[x - 1, y    ] +

height[x + 1, y    ] + 

height[x    , y - 1] + 

height[x    , y + 1] )

diff[x, y] = (height[x, y] - average)^2

for all nodes where diff !=0:

result += diff

return result



Pattern #3: Reduce 

Given a sequence of input S = [a0, a1, …, an-1] and a binary associative and 
commutative operator ⊕ (e.g., +, *, min, max)

 Reduce(⊕, S) = a0 ⊕ a1 ⊕ … ⊕ an-1

3.4 4.1 7.6 2.4 8.7 1.9 4.2

+

32.3



Pattern #3: Reduce 

Given a sequence of input S = [a0, a1, …, an-1] and a binary associative and 
commutative operator ⊕ (e.g., +, *, min, max)

 Reduce(⊕, S) = a0 ⊕ a1 ⊕ … ⊕ an-1

3.4 4.1 7.6 2.4 8.7 1.9 4.2

+

32.3

Associative: (a0⊕a1)⊕a2 =a0⊕ (a1⊕a2) 

Commutative: a0⊕a1 = a1⊕a0 



Pattern #3: Reduce 

Work efficiency:

The total amount of work done over by all processors 



Pattern #3: Reduce 

Work efficiency:

The total amount of work done over by all processors 

Step efficiency:

The number of steps it takes to do that work



Pattern #3: Reduce 

• Parallel Reduction 
- Add two halves of domain 
together repeatedly



Pattern #3: Reduce 

• Parallel Reduction 
- Add two halves of domain 
together repeatedly



Pattern #3: Reduce 

• Parallel Reduction 
- Add two halves of domain 
together repeatedly



Pattern #3: Reduce 

• Parallel Reduction 
- Add two halves of domain 
together repeatedly

O(log2N) Steps
 O(N) Work



Pattern #3: Reduce 

• Parallel Reduction 

- log(N) parallel steps, each step S does N/2S independent ops
- Step complexity is O(log2 N) 

- Performs N/2+ N /4+…+1= N -1 operations 
- Work complexity is O(N)

- It is work-efficient, i.e., does not perform more operations than a sequential 
algorithm



Pattern #3: Reduce 

• Parallel Reduction Kernel



Pattern #3: Reduce 

• Improve memory accesses 



Pattern #3: Reduce 

• Minimize global memory accesses 

Global Memory 

Shared Memory 



Pattern #3: Reduce 

• Thread coarsening to reduce overhead  

Global Memory 

Shared Memory 

no sync



Algorithm
result = 0

for all quads:

average =

0.25 * (height[x - 1, y    ] +

height[x + 1, y    ] + 

height[x    , y - 1] + 

height[x    , y + 1] )

diff[x, y] = (height[x, y] - average)^2

for all nodes where diff !=0:

result += diff

return result



Pattern #4: Stream Compaction 

Given an input sequence S and a predicate P, 
output another sequence T that only contains 
elements that satisfy the predicate

A B C D E F G H

A C D G

S =

T=



Pattern #4: Stream Compaction 

A B C D E F G H

1 0 1 1 0 0 1 0

Input

Predicate Array
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Pattern #4: Stream Compaction 

A B C D E F G H

A C D G

1 0 1 1 0 0 1 0

0 1 1 2 3 3 3 4

Input

Predicate Array

“Sum up all 
elements before me”

Scatter addresses
for true elements



“Where do I write my output?”



“Where do I write my output?”

- The answer is:
“That depends on how much the other threads need to write!” 



“Where do I write my output?”

- The answer is:
“That depends on how much the other threads need to write!” 

-  Scan is an efficient way to answer this question in parallel

- Examples: marching cubes, collision detection, sorting, 
building trees 



Pattern #5: Scan

Given a sequence of input S = [a0, a1, …, an-1] and a binary 
associative operator ⊕ with identity I

 Scan(S, ⊕, I) = [I, a0, a0 ⊕ a1, … , (a0 ⊕ a1 … ⊕ an-2)]

When ⊕ is addition, this corresponds to the prefix sum

3 1 7 0 4 1 6 3

0 3 4 11 11 15 16 22

Input

Scan



Pattern #5: Scan

Example for when ⊕ is addition, i.e., prefix sum 

3 1 7 0 4 1 6 3

0 3 4 11 11 15 16 22

Input

Exclusive 
Scan



Pattern #5: Scan

Example for when ⊕ is addition, i.e., prefix sum 

3 1 7 0 4 1 6 3

0 3 4 11 11 15 16 22

3 4 11 11 15 16 22 25

Input

Exclusive 
Scan

Inclusive 
Scan



Pattern #5: Scan

Sequential implementation
- N additions needed for N elements—O(N)  

y[0] = x[0]

for (i=1; i<len; ++i)

y[i] = y[i-1] + x[i]

Input    [x0, x1, x2, ….]

Output [y0, y1, y2,….]

Such that   

         y0 = x0

         y1 = x0 + x1

         y2 = x0 + x1 + x2

         …



Pattern #5: Scan



Pattern #5: Scan

iter 0, stride 20



Pattern #5: Scan

iter 1, stride 21



Pattern #5: Scan

iter 2, stride 22



Pattern #5: Scan

• Kogge-Stone algorithm 

O(log2N) Steps
O(N log2N) Work

Step efficient

Not work efficient



Pattern #5: Scan

• Kogge-Stone algorithm 



Pattern #5: Scan

x0 x1 x2 x3 x4 x5 x6 x7

Up-sweep Phase

iter = 0

(tid+1)%21 == 0

stride = 20
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Pattern #5: Scan

x0 x1 x2 x3 x4 x5 x6 x7

x0 x0...x1 x2 x0...x3 x4 x4...x5 x6 x0...x7 

x0 x0...x1 x2 x2...x3 x4 x4...x5 x6 x6...x7 

x0 x0...x1 x2 x0...x3 x4 x4...x5 x6 x4...x7 

Up-sweep Phase

iter = 2

(tid+1)%23 == 0

stride = 22



Pattern #5: Scan

x0 x1 x2 x3 x4 x5 x6 x7
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Pattern #5: Scan

x0 x1 x2 x3 x4 x5 x6 x7

x0 x0...x1 x2 x0...x3 x4 x4...x5 x6 x0...x7 

x0 x0...x1 x2 x2...x3 x4 x4...x5 x6 x6...x7 

x0 x0...x1 x2 x0...x3 x4 x4...x5 x6 x4...x7 x0 x0...x1 x2 x0...x3 x4 x4...x5 x6 x0...x7 

x0 x0...x1 x2 x0...x3 x4 x0...x5 x6 x0...x7 

x0 x0...x1 x0...x2 x0...x3 x0...x4 x0...x5 x0...x6 x0...x7 

Up-sweep Phase

Down-sweep Phase



Pattern #5: Scan

• Brent-Kung algorithm

x0 x1 x2 x3 x4 x5 x6 x7

x0 x0...x1 x2 x0...x3 x4 x4...x5 x6 x0...x7 

x0 x0...x1 x2 x2...x3 x4 x4...x5 x6 x6...x7 

x0 x0...x1 x2 x0...x3 x4 x4...x5 x6 x4...x7 x0 x0...x1 x2 x0...x3 x4 x4...x5 x6 x0...x7 

x0 x0...x1 x2 x0...x3 x4 x0...x5 x6 x0...x7 

x0 x0...x1 x0...x2 x0...x3 x0...x4 x0...x5 x0...x6 x0...x7 



Pattern #5: Scan

• Improve work efficiency by reusing of computation results 

O(log2N) Steps
O(N) Work



Back to Stream Compaction 

A B C D E F G H

A C D G

1 0 1 1 0 0 1 0

0 1 1 2 3 3 3 4

Input

Predicate Array

“Sum up all 
elements before me”

Scatter addresses
for true elements



Pattern #5: Scan

Scan across blocks 
• Scan-and-add strategy 
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Pattern #5: Scan

Scan across blocks 
• Scan-and-add strategy 

Block 0 Block 1 Block 2 Block 3



Pattern #5: Scan

Scan across blocks 
• Scan-and-add strategy (4n read/write) 



Pattern #5: Scan

Scan across blocks 
• Reduce-then-scan strategy (3n read/write)  

Merrill, Garland
Single-pass Parallel Prefix Scan with Decoupled Look-back. 
2013



Questions?!



Credits: 

This lecture is primarily derived from:

• John Owens’s course on Modern Parallel Computing (EEC 289Q, UC Davis, Winter 2018)

• Kayvon Fatahalian‘s course on Parallel Computing (CS149, Stanford, Fall 2023)

• Programming Massively Parallel Processors - A Hands-on Approach book, 4th edition by 
Wen-mei W. Hwu, David B. Kirk, and Izzat El Hajj, 2023



Pattern #5: Scan

Scan across blocks 
• Decoupled look-back  

Merrill, Garland
Single-pass Parallel Prefix Scan with Decoupled Look-back. 
2013
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