

# Evolving Ampere to Hopper

MIT 6.S894: Accelerated Computing Lecture 8 - 2025/10/23

Vijay Thakkar (@\_\_tensorcore\_\_)

- Senior DL Compute Architect @ NVIDIA
- "Part time" PhD student @ HPC Garage, GaTech

## How do we achieve this?

| (measurements in TFLOPS) | A100        | A100<br>Sparse | H100<br>SXM5 | H100 SXM5 Sparse | H100 SXM5 1 Speedup vs<br>A100 |
|--------------------------|-------------|----------------|--------------|------------------|--------------------------------|
| FP8 Tensor Core          |             |                | 2000         | 4000             | 6.4x vs A100 FP16              |
| FP16                     | 78          |                | 120          |                  | 1.5x                           |
| FP16 Tensor Core         | 312         | 624            | 1000         | 2000             | 3.2x                           |
| BF16 Tensor Core         | 312         | 624            | 1000         | 2000             | 3.2x                           |
| FP32                     | 19.5        |                | 60           |                  | 3.1x                           |
| TF32 Tensor Core         | 156         | 312            | 500          | 1000             | 3.2x                           |
| FP64                     | 9.7         |                | 30           |                  | 3.1x                           |
| FP64 Tensor Core         | 19.5        |                | 60           |                  | 3.1x                           |
| INT8 Tensor Core         | 624<br>TOPS | 1248 TOPS      | 2000         | 4000             | 3.2x                           |





## First Principles

#### These are all you need to know

#### Hardware and physics:

- Moore's law is still alive and kicking but slowing down
- Dennard scaling is dead per xtor energy will scale extremely slowly now
  - We are in a power limited regime of silicon engineering
- Data movement is sin
  - Cost of moving data is 100x-100000x higher that computing on it
  - Latency of moving data cannot be improved

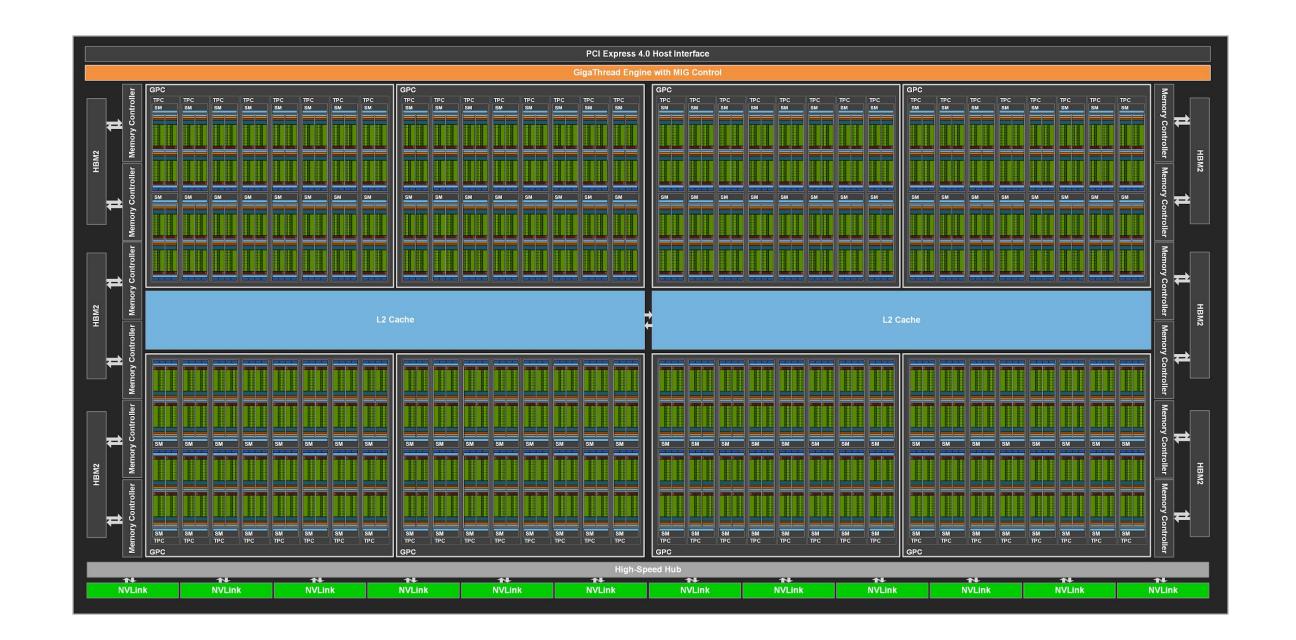
#### Software and algorithmic:

- Matix multiply has infinite potential for data-reuse
  - Arbitrarily high arithmetic intensity
- Ahmdal's law is the death of embarassingly parallel workloads



# Lowest hanging fruit first

Can we just spam more cores???

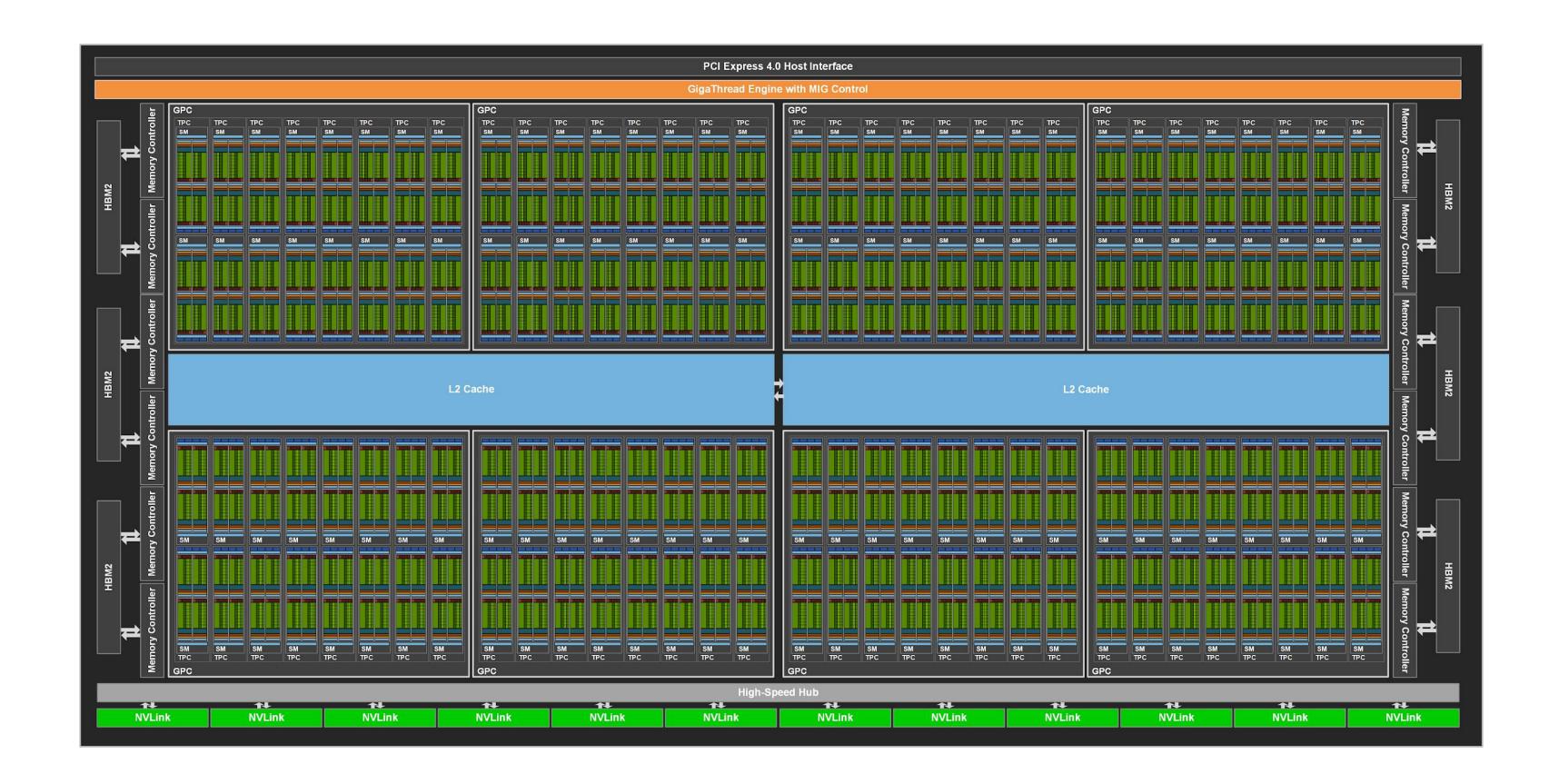


A100: 2019

Reticle size die on TSMC N7

52 giga-xTors

Use it to add 22% more SMs (108 -> 132)
We are still 2.3x away from our scaling goal



H100: 2021

Reticle size die on TSMC N5

80 giga-xTors

~ 54% density increase



# Aside: Strong v. Weak Scaling

Would you rather fight 100 👺 sized 👰 or 1 👰 sized 👺



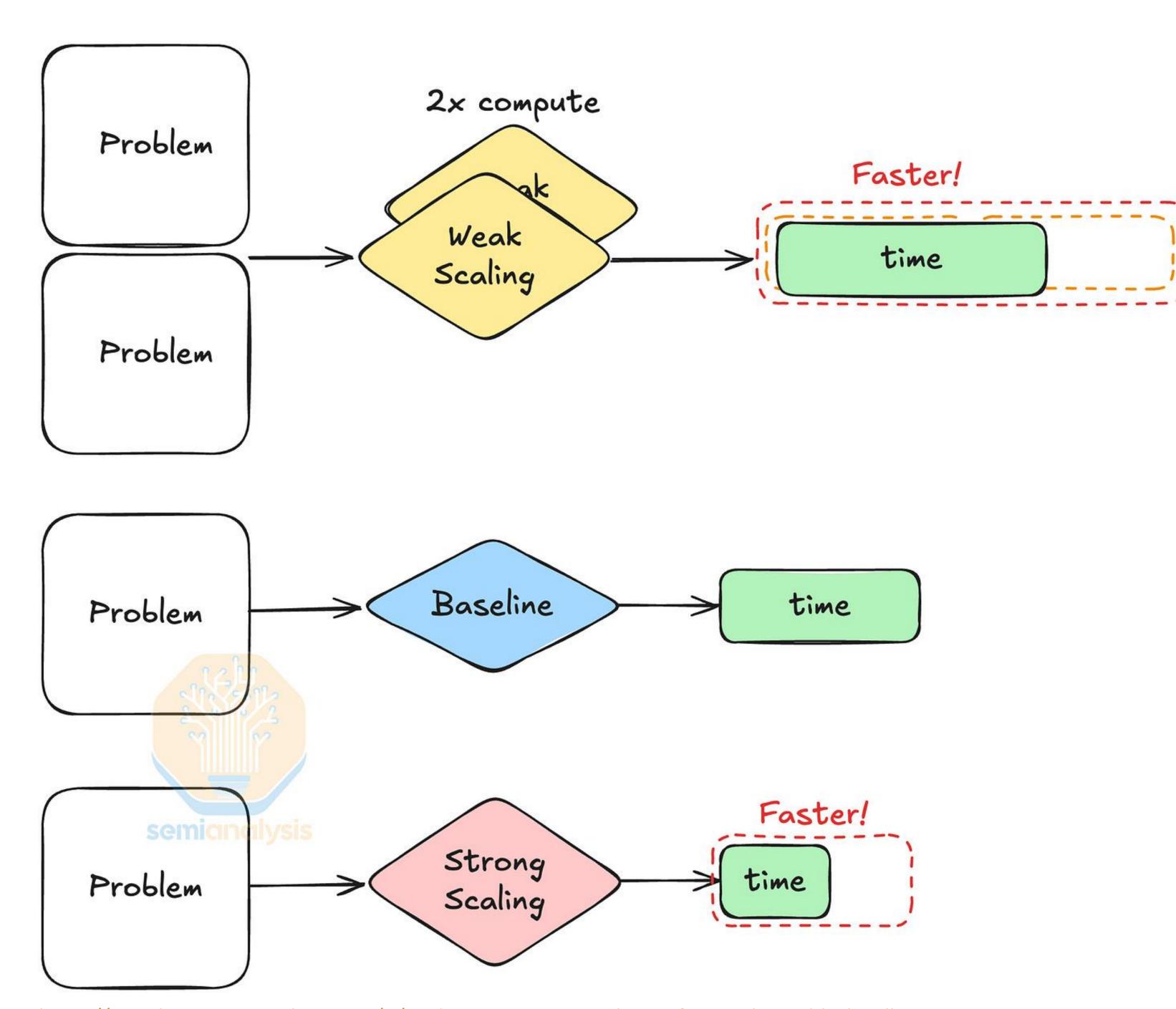






- Weak scaling:
  - Same time to solution for 2x larger problem with 2x more workers
  - Requires embarassingly parallel workload AND
  - An opulence of scaling execution units

- Strong scaling:
  - 2x lower time to solution for the same problem size



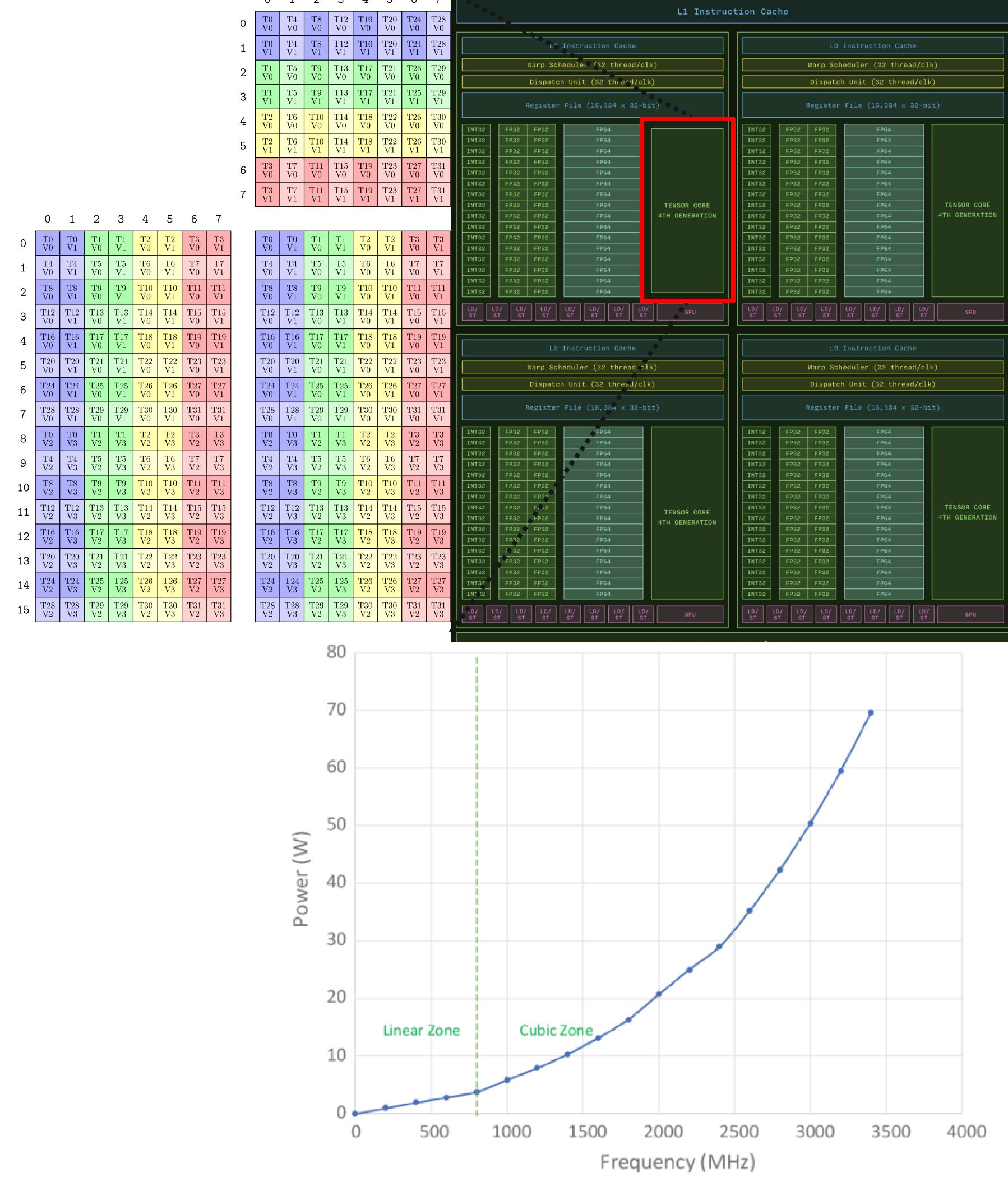
https://newsletter.semianalysis.com/p/nvidia-tensor-core-evolution-from-volta-to-blackwell



## We have to strong scale

And there is no free lunch here ...

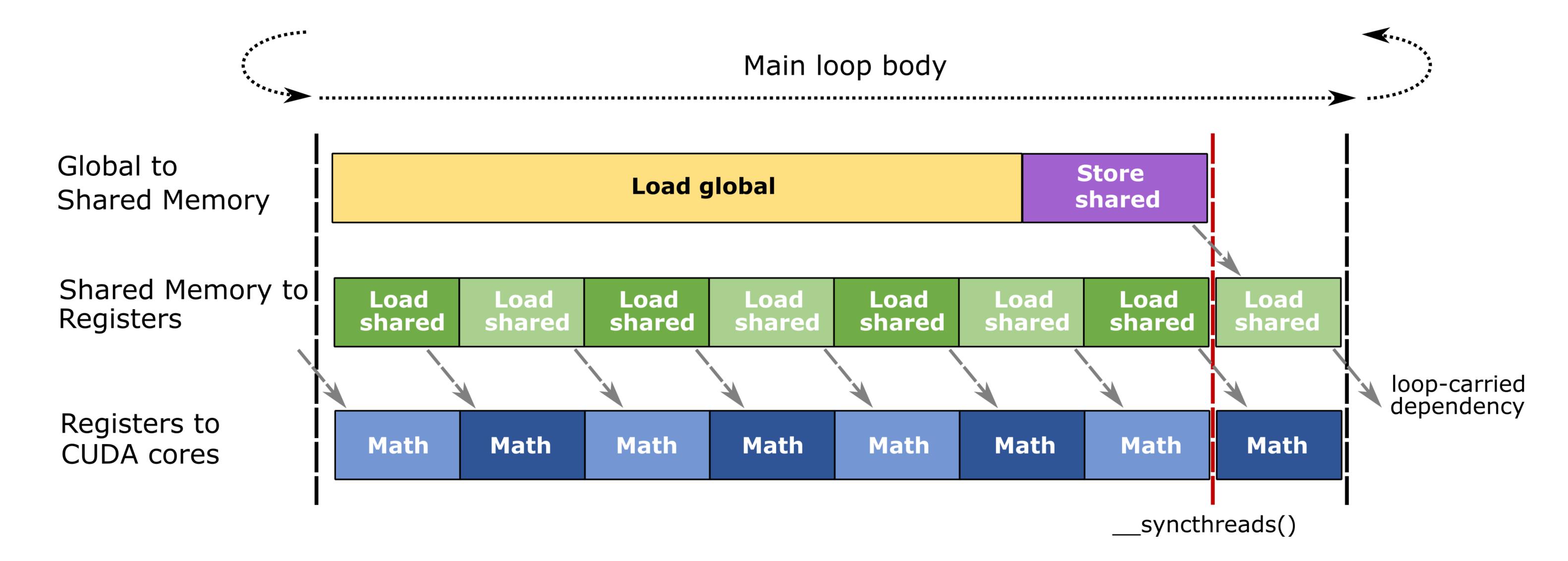
- Ampere tensor core runs at 8 clocks per 16x8x16 instruction
- Can we just make it run in 4 clk instead? ... Not so simple
- Increases b/w requirements on the VRF by 2x
- Data must load from SMEM -> RMEM 2x fewer clocks too
  - This is \_insanely\_ hard to do
  - Limited by wire parasitics and speed of electrons
- Pipeline deeper instead grow RMEM size???
  - Add banks?
- How do we even hide issue latencies of HMMA/LDSM
- Can't scale clock speeds either power is O(frequency<sup>3</sup>)



## Ampere Mainloop

#### ASYNC in SMEM and ILP in RMEM

- Async gmem->smem copy (3 stage pipeline)
- Deeper pipelines from async copies and less register pressure
- Tight instruction interleaving between LDSM+HMMA for peak utilization
- 2 CTA / SM occupancy for hiding epilogue
- 256 thread CTAs





### Speed of Light Ampere Mainloop

Async in SMEM + ILP in RMEM

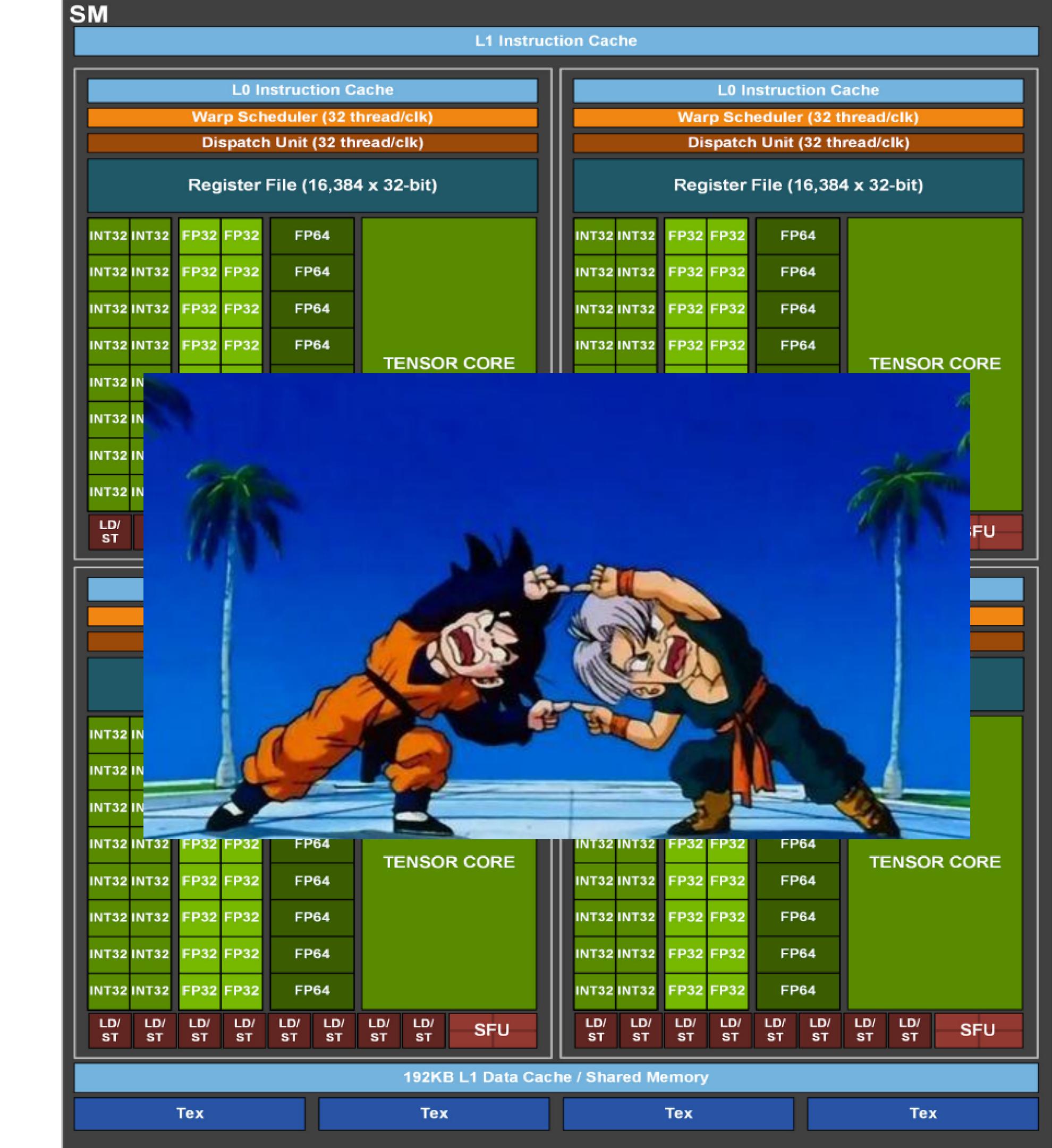
```
CUTLASS_PRAGMA_NO_UNROLL
for ( ; k_tile_count > -(TILE_STAGES-1); --k_tile_count)
 // Pipeline the outer products with a static for loop.
 // Note, the for_each() function is required here to ensure `k_block` is of type Int<x>.
  for_each(make_int_sequence<K_BLOCK_MAX>{}, [&] (auto k_block)
    if (k_block == K_BLOCK_MAX - 1)
     // Slice the smem_pipe_read smem
      tCsA_p = tCsA(_,_,_,smem_pipe_read);
      tCsB_p = tCsB(_,_,_,smem_pipe_read);
     // Commit the smem for smem_pipe_read
     cp_async_wait<TILE_STAGES-2>();
      __syncthreads();
    // Load A, B shmem->regs for k_block+1
   auto k_block_next = (k_block + Int<1>{}) % K_BLOCK_MAX; // static
    copy(smem_tiled_copy_A, tCsA_p(_,_,k_block_next), tCrA_copy_view(_,_,k_block_next));
   copy(smem_tiled_copy_B, tCsB_p(_,_,k_block_next), tCrB_copy_view(_,_,k_block_next));
    // Copy gmem to smem before computing gemm on each k-pipe
   if (k_block == 0)
     copy(gmem_tiled_copy_A, tAgA(_,_,_,*k_tile_iter), tAsA(_,_,,smem_pipe_write)); // LDGSTS
     copy(gmem_tiled_copy_B, tBgB(_,_,_,*k_tile_iter), tBsB(_,_,_,smem_pipe_write)); // LDGSTS
     cp_async_fence();
     if (k_tile_count > 0) { ++k_tile_iter; }
     // Advance the pipe -- Doing it here accounts for K_BLOCK_MAX = 1 (no rmem pipe)
     smem_pipe_write = smem_pipe_read;
     ++smem_pipe_read;
      smem_pipe_read = (smem_pipe_read == TILE_STAGES) ? 0 : smem_pipe_read;
    // Thread-level register rank-2 gemm for k_block
   cute::gemm(tiled_mma, accum, tCrA(_,_,k_block), tCrB(_,_,k_block), src_accum);
 }); // k_block
} // k_tile
```

```
// Issue async gmem loads for PIPE+2
@p0 LDGSTS gmem[Rx+0], smem[Rx+0];
@p1 LDGSTS gmem[Rx+1], smem[Rx+1];
@p2 LDGSTS gmem[Rx+3], smem[Rx+2];
@p3 LDGSTS gmem[Rx+4], smem[Rx+3];
// Wait for PIPE to be visible
__cp_async_fence();
__cp_async_wait<N-2>();
// Issue "async" smem loads for HMMA+1/2
LDSM smem[Rm+0], Ra0, Ra1, Ra2, Ra3
LDSM smem[Rm+1], Rb0, Rb1, Rb2, Rb3
// Issue MMA
HMMA Ra0, Rb01, Rb02, Rc0
HMMA Ra1, Rb01.reuse, Rb02.reuse, Rc0
HMMA Ra2, Rb02, Rb03, Rc0
HMMA Ra3, Rb01.reuse, Rb02.reuse, Rc0
// repeat 2xLDSM+4xHMMA over the tile
```

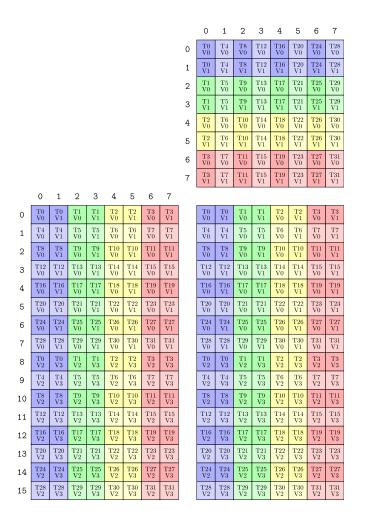


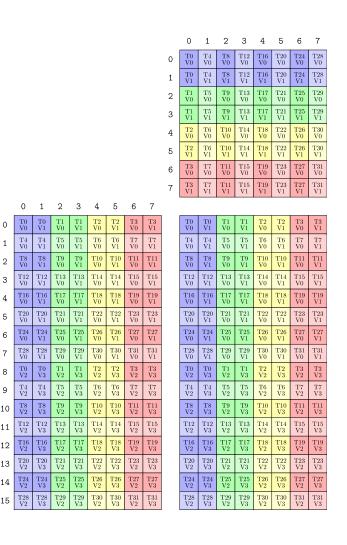
## Exploit the workload

- Matmul is specifically amenable to strong scaling
- We have "infinite" arithmetic intensity
- AI =  $\theta((m*n)/k)$
- Ampere TC is warp-wide
  - 32 threads
  - 16x8x16
  - 8 clocks
- But our SMs have 4 sub-partitions that run in parallel
- Already issuing 4 separate MMAs across them

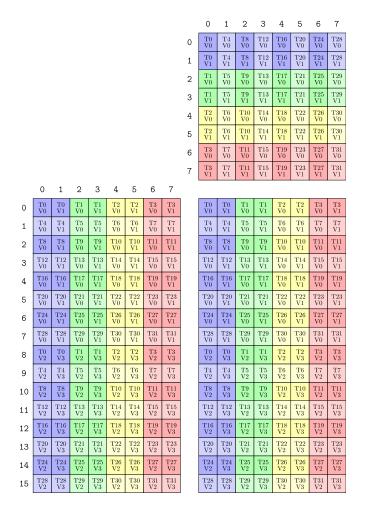


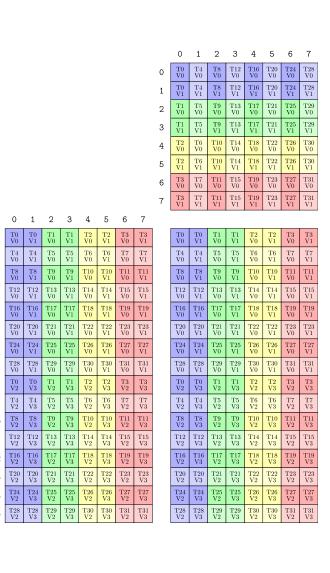
# SM90 WGMMA spans all 4 sub-partitions

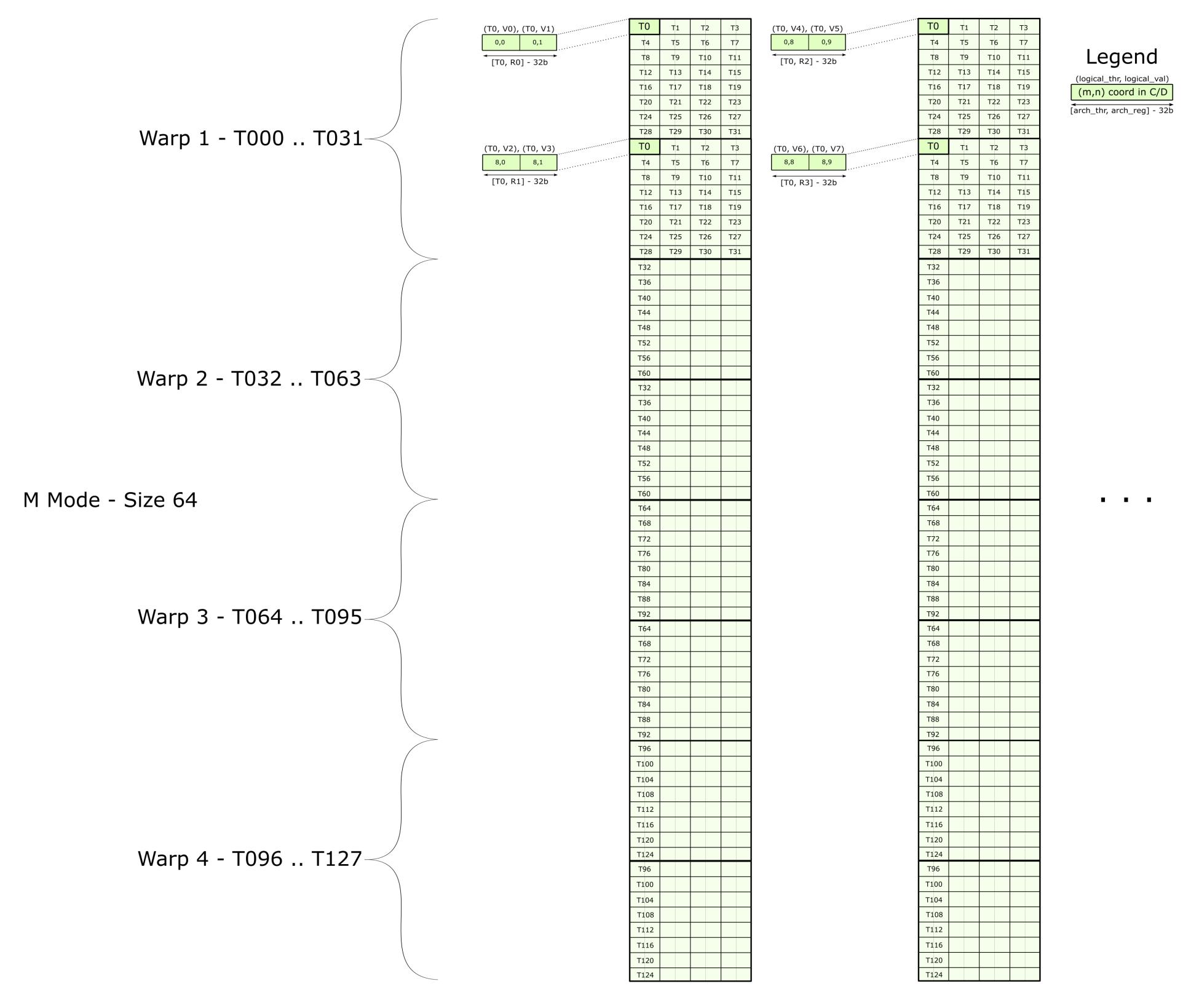












N Mode - Size Multiple of 8 in [8, 256]

GMMA Warpgroup Level C/D Matrix Layout (16b dstfmt)

Configurable N dimension in range(8, 256, 8)



#### But how do we feed the beast?

We cut B matrix reads by a factor of 4 BUT

The instruction is now massive

Ampere: 16x8x16

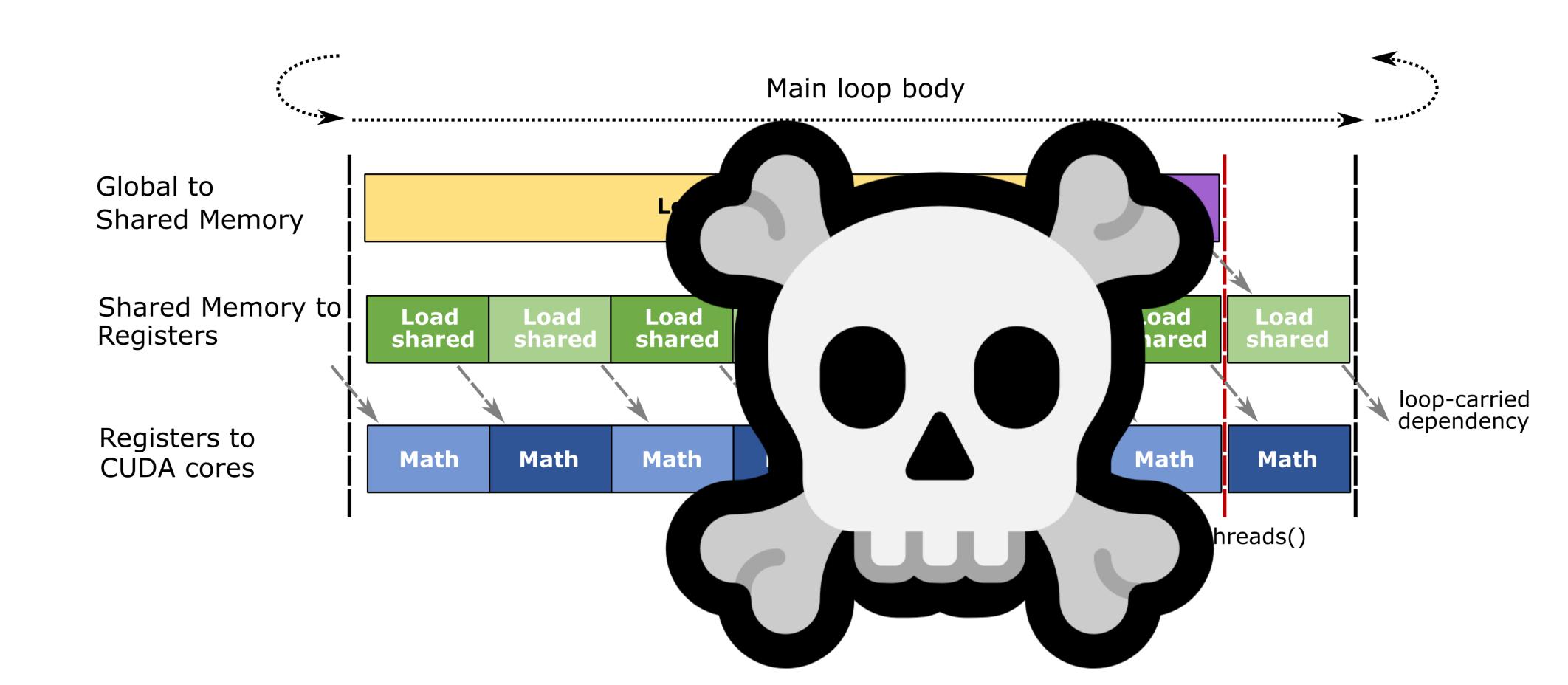
Hopper: 64x128x16

8x more data per MMA

And it runs 2x faster per clock

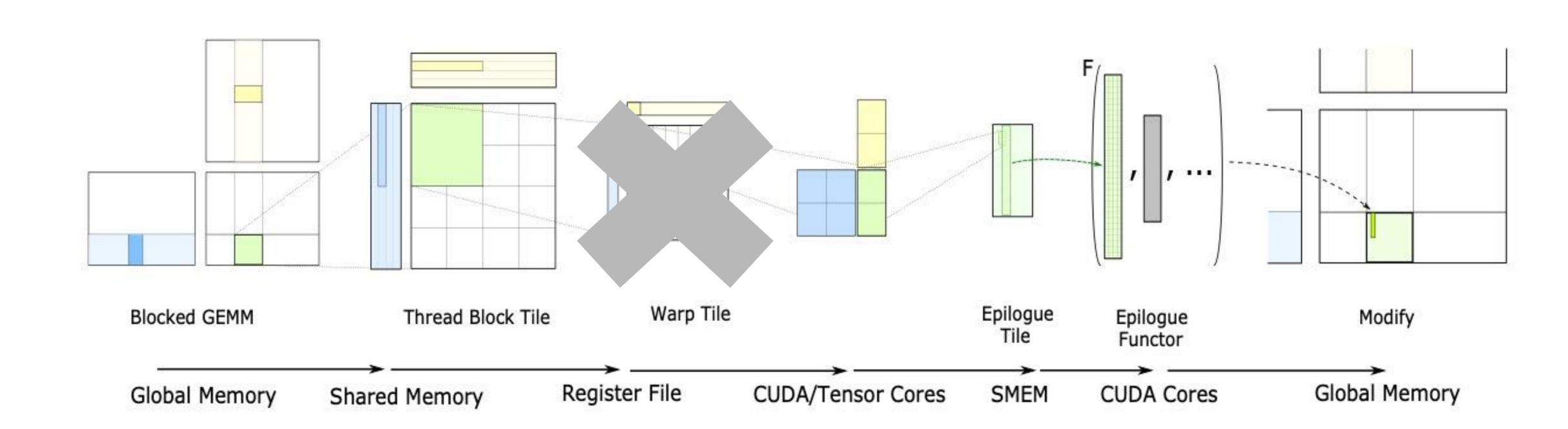
• Could we load 64x16 + 128x16 tiles for each into RMEM?

- We have to keep (64x16) + (128x16) + (64x128) live in registers
  - Blows up register budgets
- Exposes the entire load latency Ahmdal's law

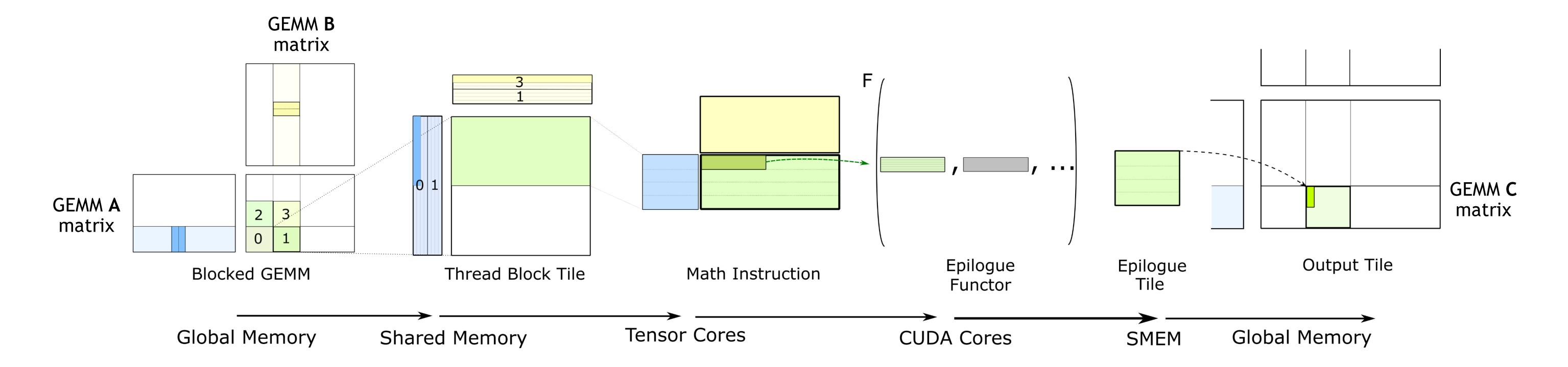




## What's new in Hopper



#### Tensor cores reuse data directly from in shared memory



## We strong scaled our tensor core

- Fed it with data from smem directly
- Made it async since its so big now
- Victory?!
- But if you were to run this on H100 silicon (LDGSTS + GMMA)
- You would get no extra performance at all
- We still have latencies to contend with
- GMEM load latencies did not improve gen-on-gen
- If anything they got worse
- Moving data around in wires cannot get faster
- How do we tolerate higher gmem latencies?
  - Builder smaller chips?
  - Stack memory?
  - Grow caches?
- Asynchrony is our best countermeasure to Ahmdal's law



A100 SMEM: 164 KiB / SM

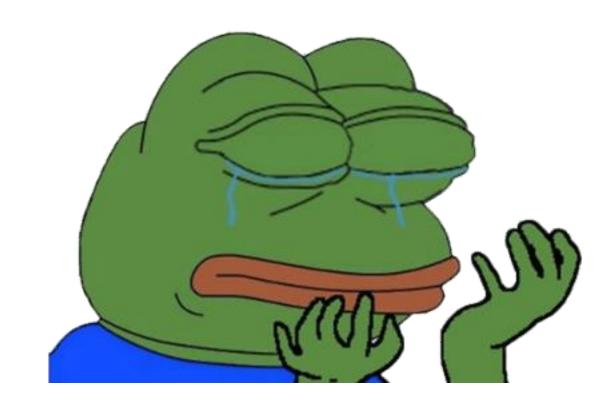
1.56x

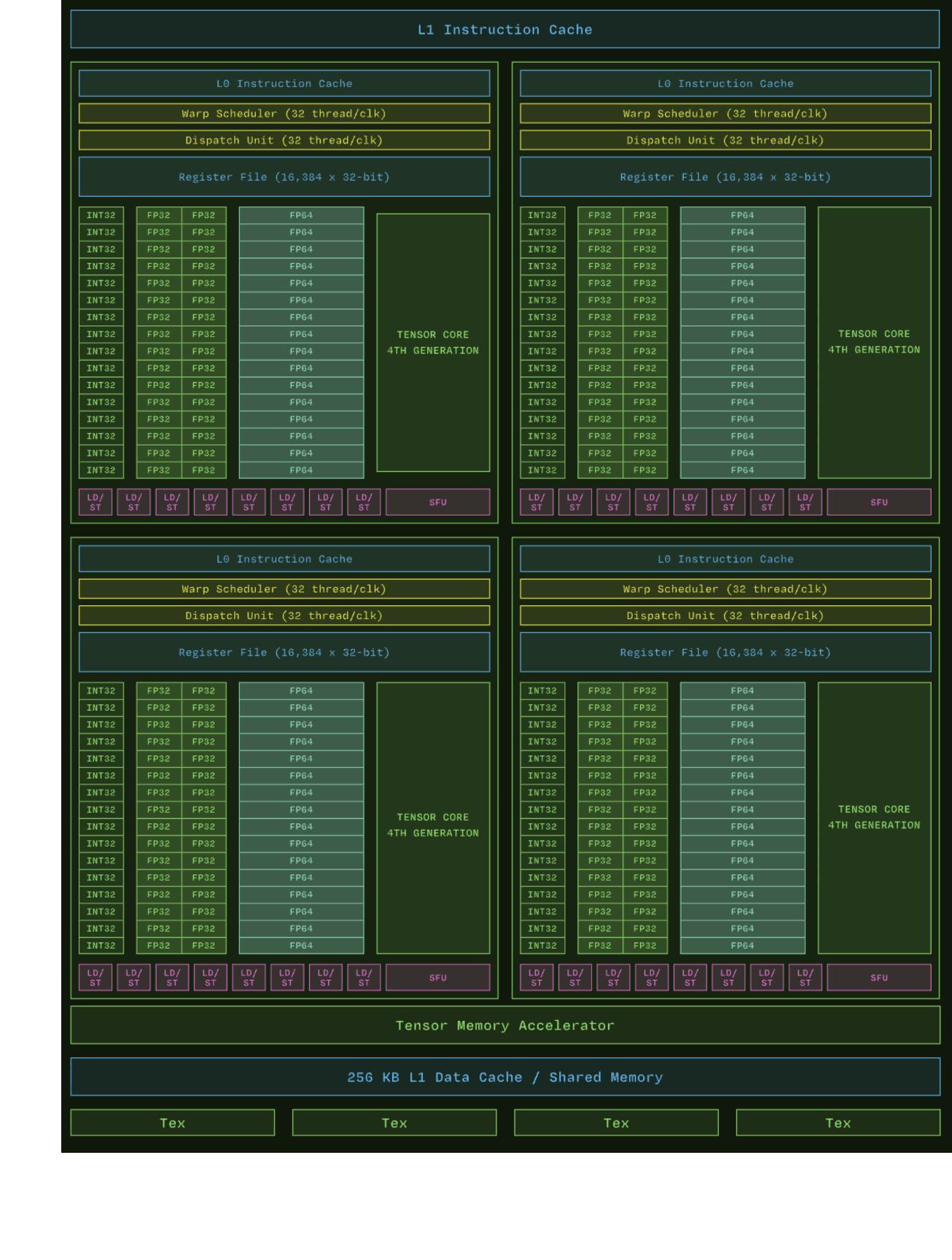
H100 SMEM: 256 KiB / SM



### Are we there yet?

- We strong scaled our tensor core
- Fed it with data from smem directly
- Grew pipeline stage counts by 1.56x (3->4/5)
- Still not enough, but we get 20% faster
- How do we get even faster?
  - MOAR cache!
  - Give up on 2 CTA / SM occupancy
- Write kernels with 1 CTA / SM occupancy
- Use all the 256 KiB of SMEM for 1 CTA
- Gets us to 6/7 stages good enough!
- But exposes the epilogue and prologue ...
  - We will come back to this later, let's press on for now
- We have bigger issues for now

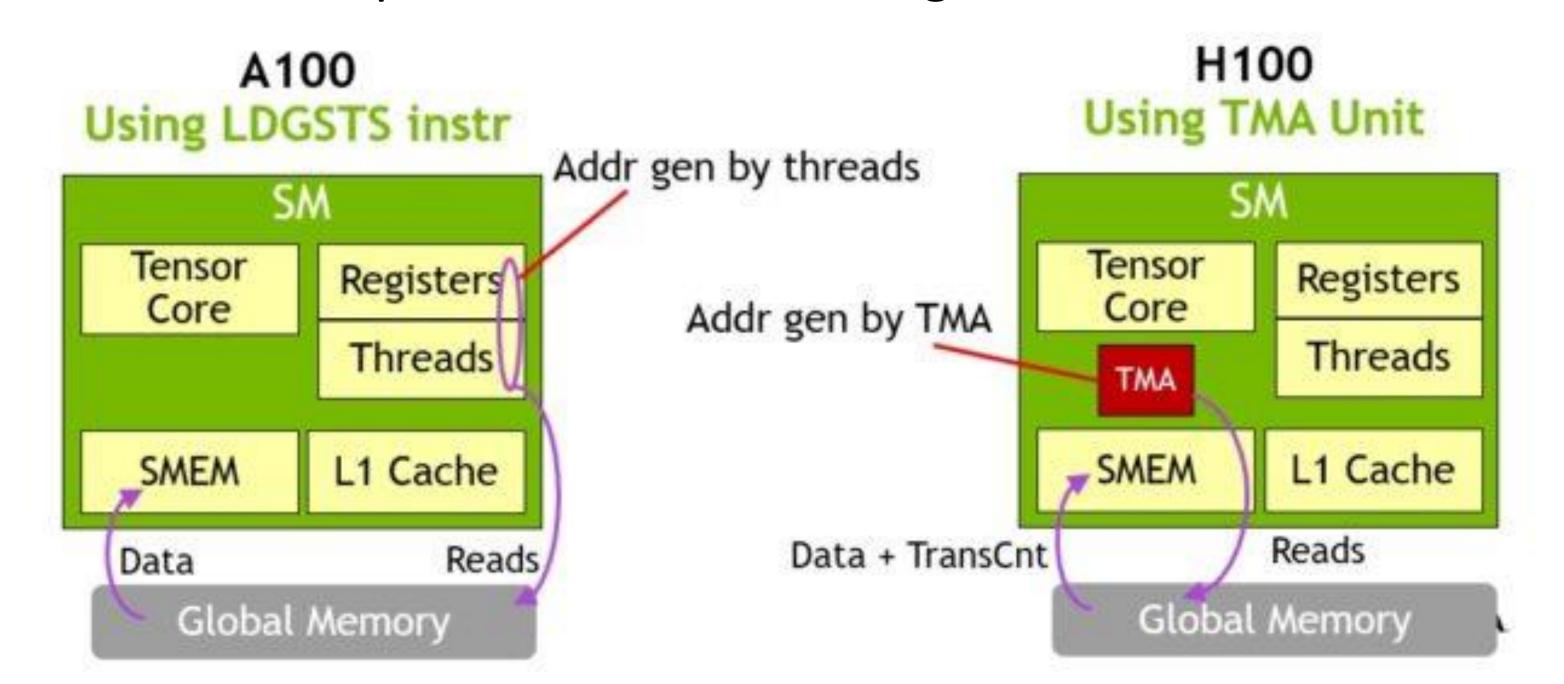


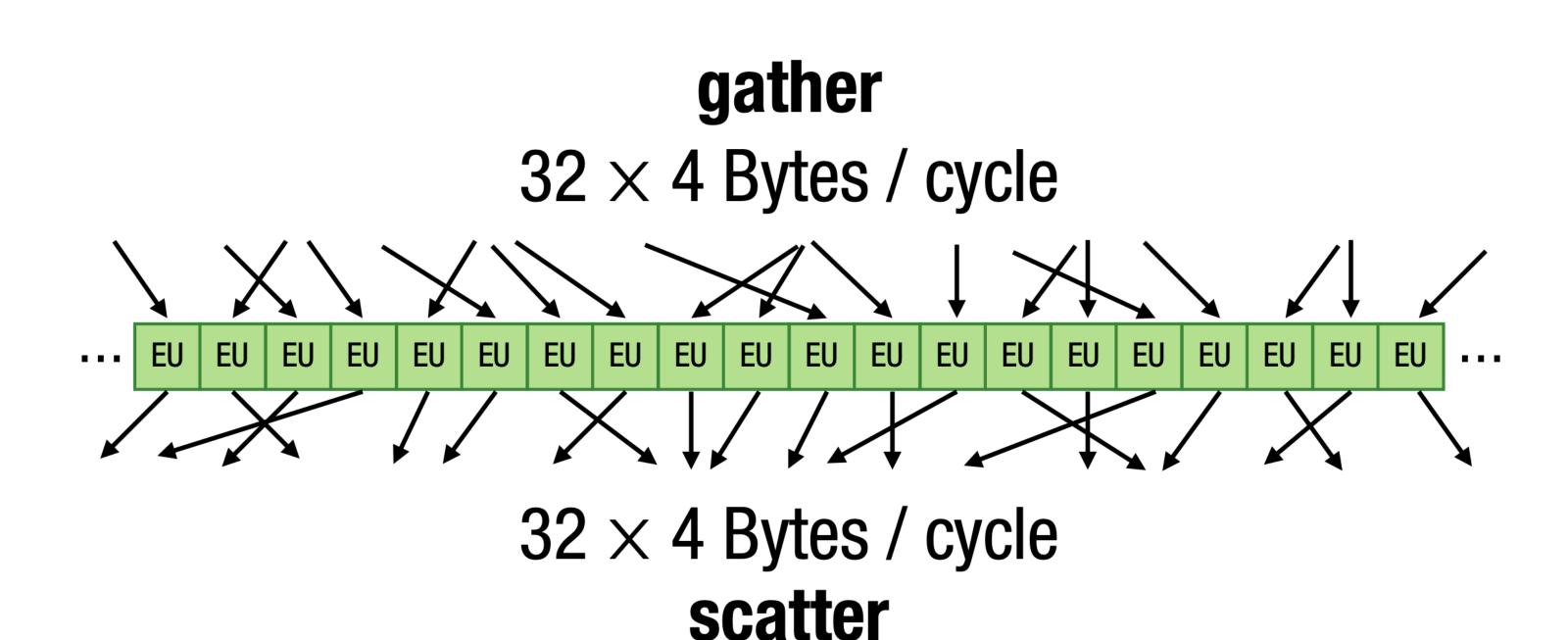


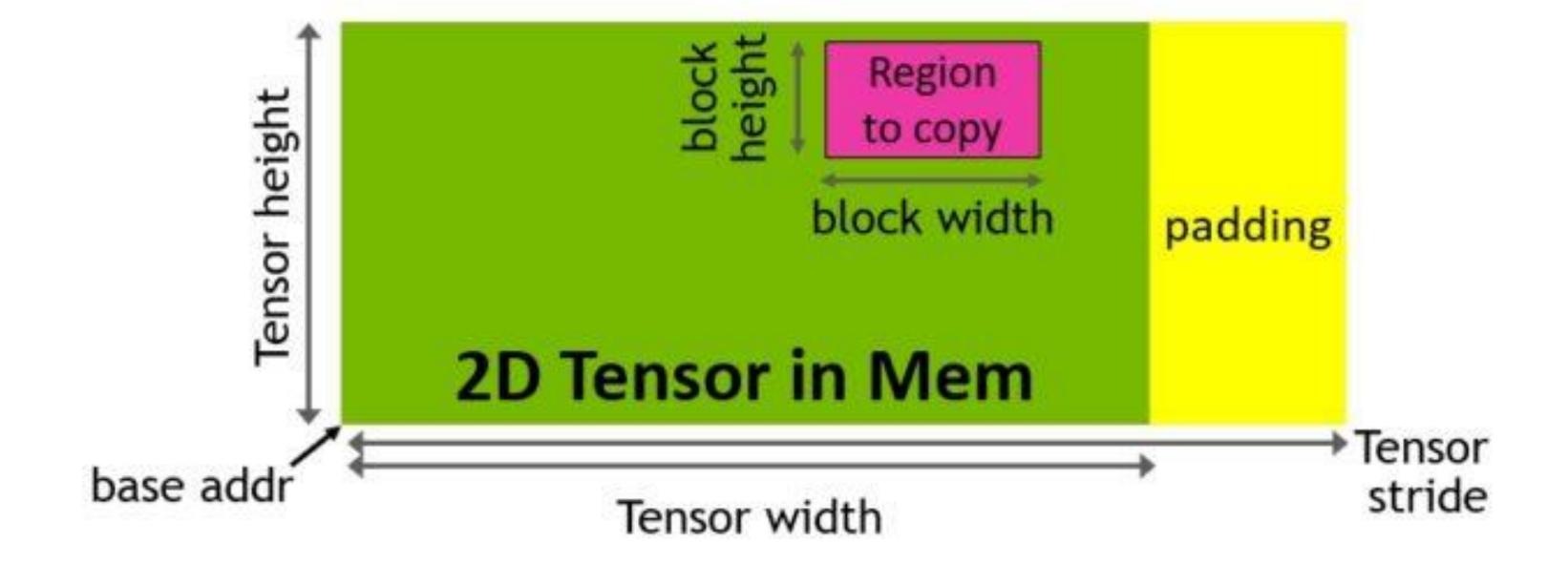


## We have not improved GMEM loads

- LDGSTS is now the main bottleneck in many ways:
  - Uses too many vector registers
  - Uses too many issue slots for address computation
  - Predication is hard to do and takes up predicate registers
- But we know what layout of smem our tensor core is going to consume
  - Not much programmer freedom here
  - We don't need the generality of SIMT load
- Introduce a new data loading engine specifically for affine tensor load/store
- Introduce a "Uniform Datapath" and "Uniform Registers"





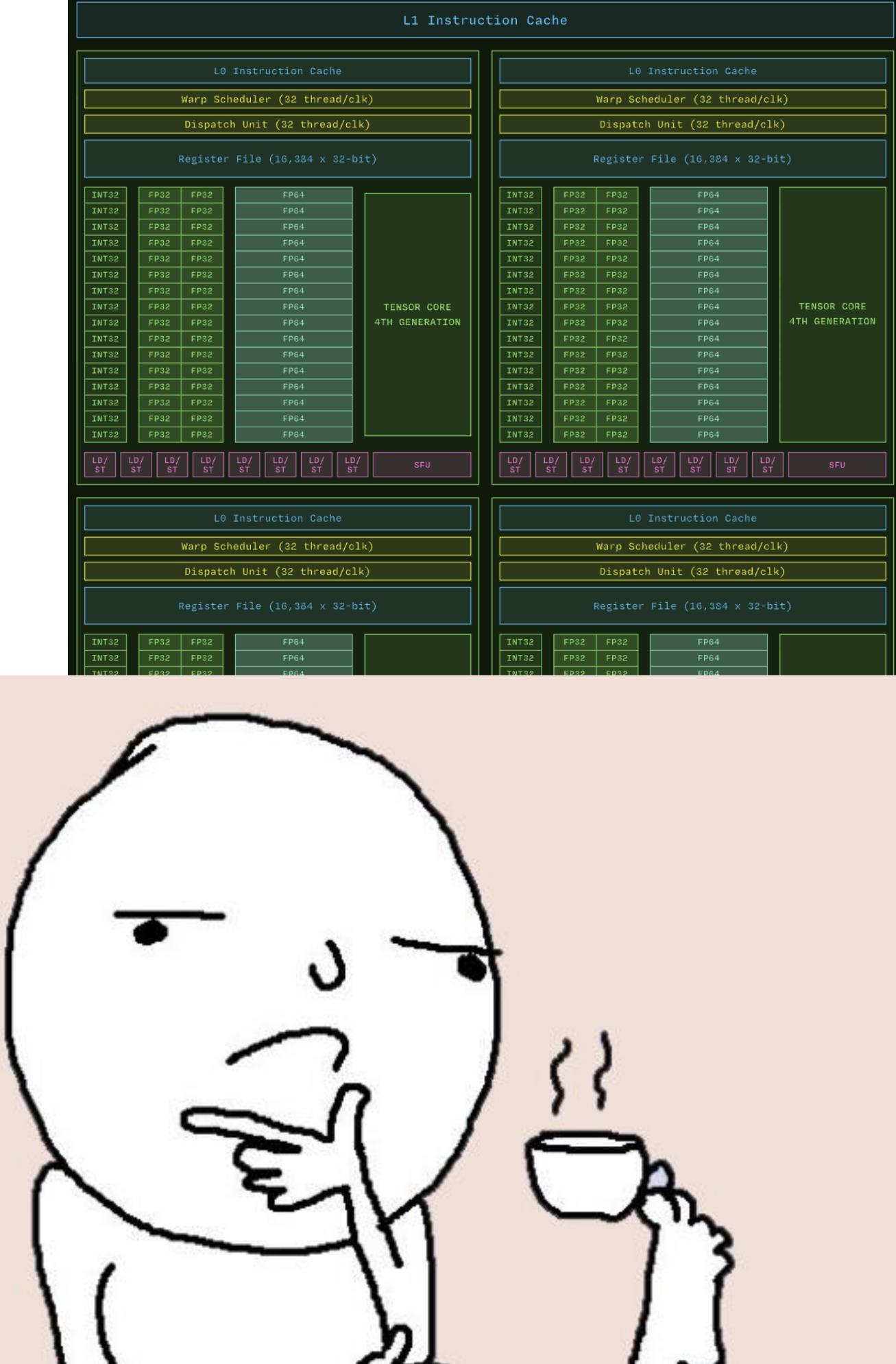




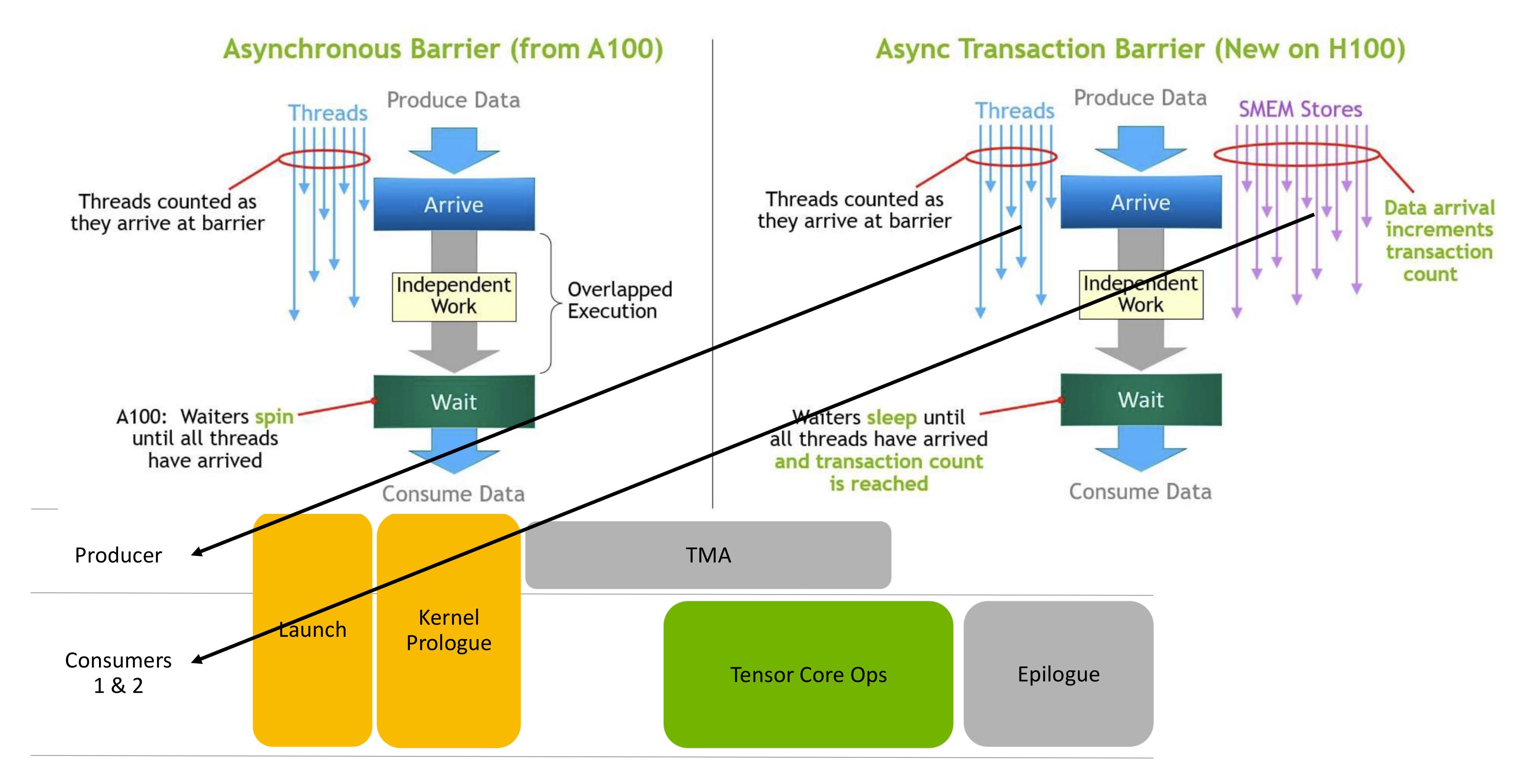
## This solves our register spills

And large tile perf is now SOL but ...

- Small tile shape performance still sucks
- You profile the workload and find out that the loop overheads are killing you now
- Overhead clocks longer latency than the tile shape MMA clocks
  - Setting up descriptors, incrementing offsets, arriving on barriers etc.
- How do we fix this?
- We could just use big tile shapes only bigger MMAs are async for longer
- BUT that's not strong scaling
- How do we strong scale?
- Core problem: TMA -> MMA -> TMA takes too many cycles
- We are bound by issue latencies of a long serial program
- These are not true deps barriers are what establish ordering already
- What if we could break the loops into separate loops to issue asap!?
- TMA is single thread and we have warp-scheduling already?



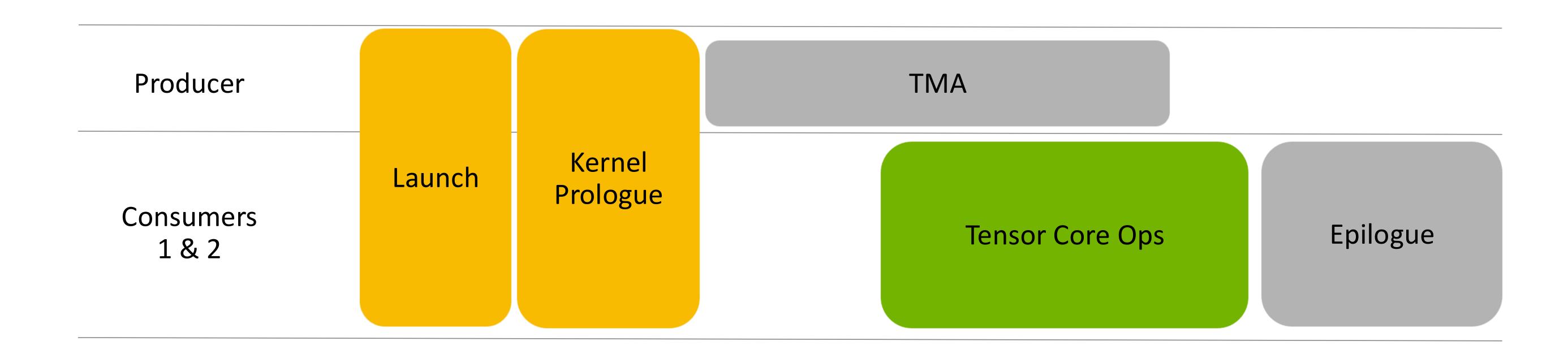
## What if we split the TMA and MMA loops into separate loops?



## But we are spilling registers again!!!

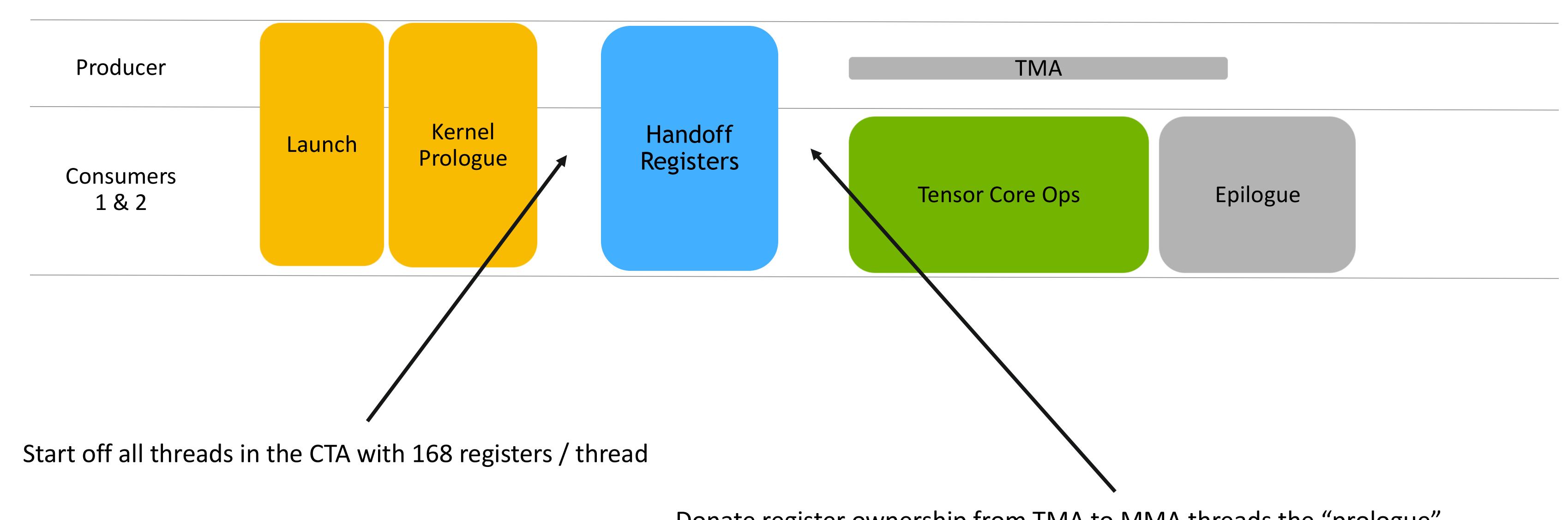
Warp-Specialized Kernels

- 256 threads are still needed for MMA to use all 512 registers in the SM
- But we now added a new workgroup for TMA for a total of 384 threads / CTA
- CUDA programming model requires all warps use the same number of registers
- round(512 / 3, 8) = 168 registers / thread
- Not enough for our massive MMA output matrices + other epilogue stuff
- Grow register file? But that would be so wasteful, we just added uniform registers
- TMA uses no registers all 168 registers in that warpgroup are wasted





# What if we could reallocate registers between warps?

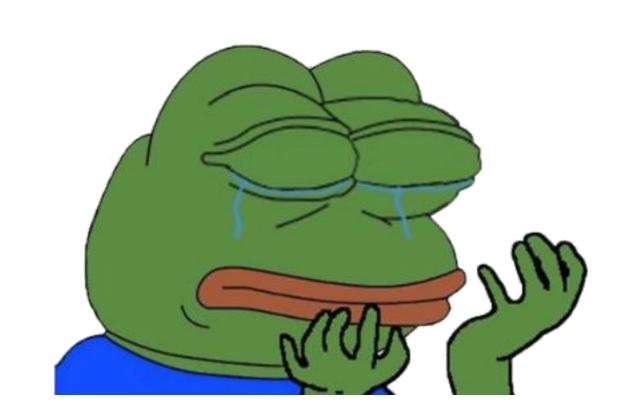


Donate register ownership from TMA to MMA threads the "prologue"



## Phew, are we there now??

- We have strong scaled our tensor core
- TMA: data loading accelerator with minimal overheads
- Added new barriers for sub-CTA sync
- Implemented register reconfiguration
- Changed kernels to be warp-specialized
- So like any good engineer, you go and profile your workload
- Only to find that for very large problems, L2 read b/w is our bottleneck now
- Solution: widen L2 read ports?



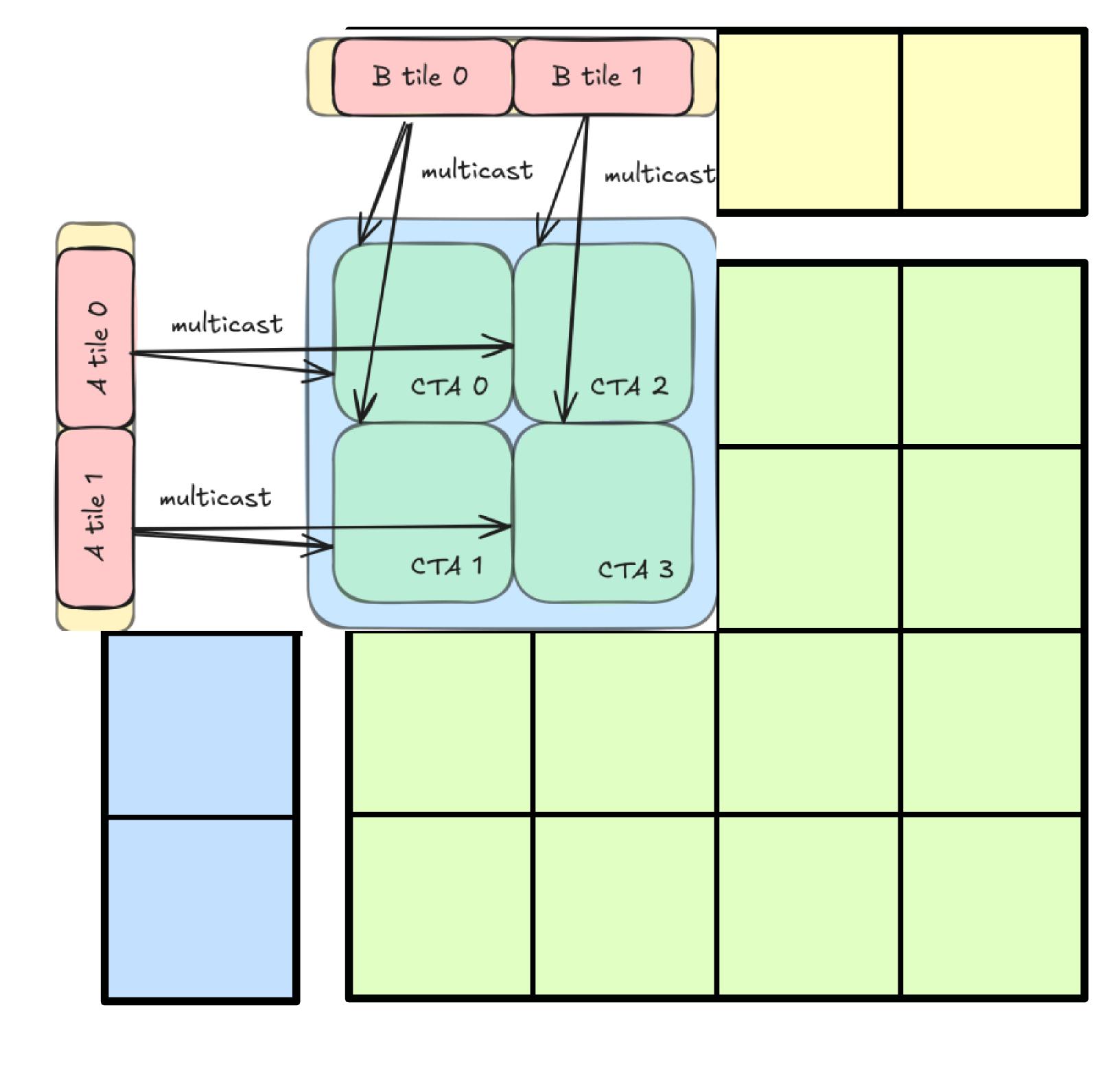


## Overcoming L2 b/w limits

#### Exploit the workload properties

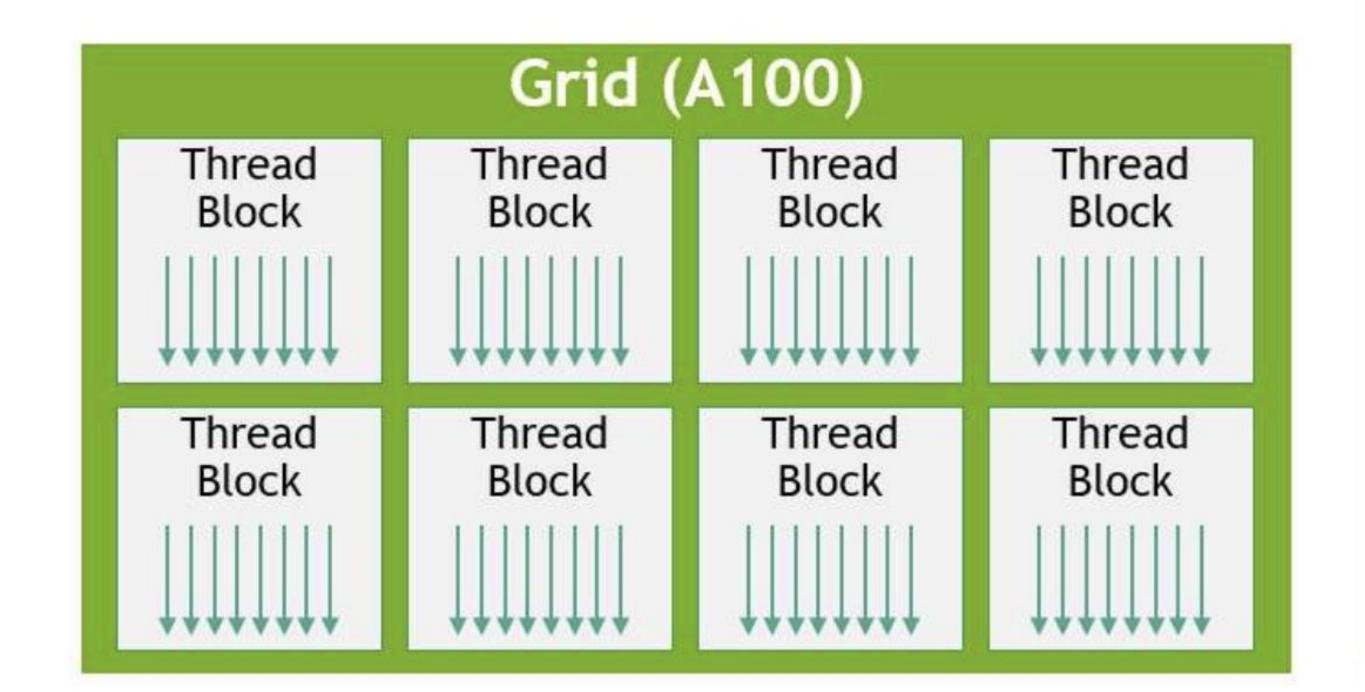
- L2 <> GPC is a massive crossbar widening it is not an option
- Recall, we have infinite arithmetic intensity
- How can we exploit that to get L2 data reuse?
- We have many separate CTAs
- We usually tile the output MxN in a 2D grid
- Projections of CTAs along A and B load the same data
- Our GPU already has GPCs as a hierarchy
- What if we could load from L2 only once to the GPC
- And then broadcast that data to all the SMs that need it?

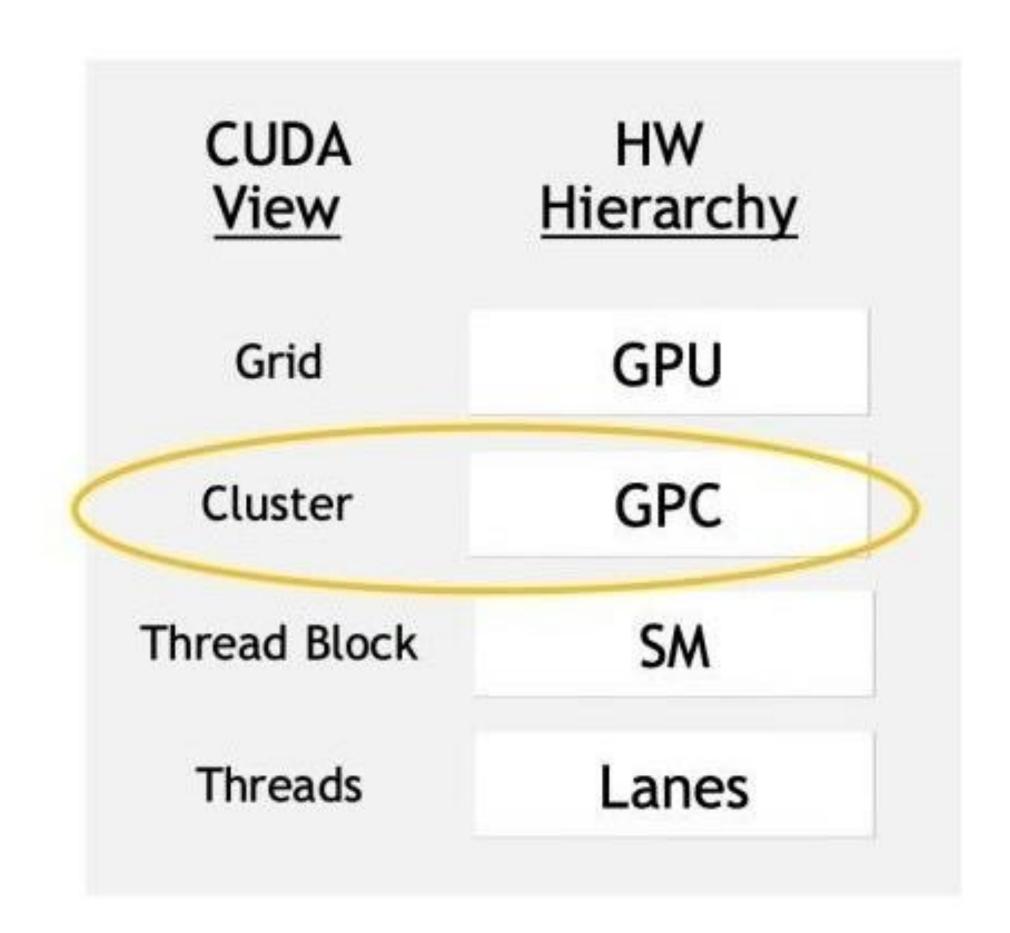


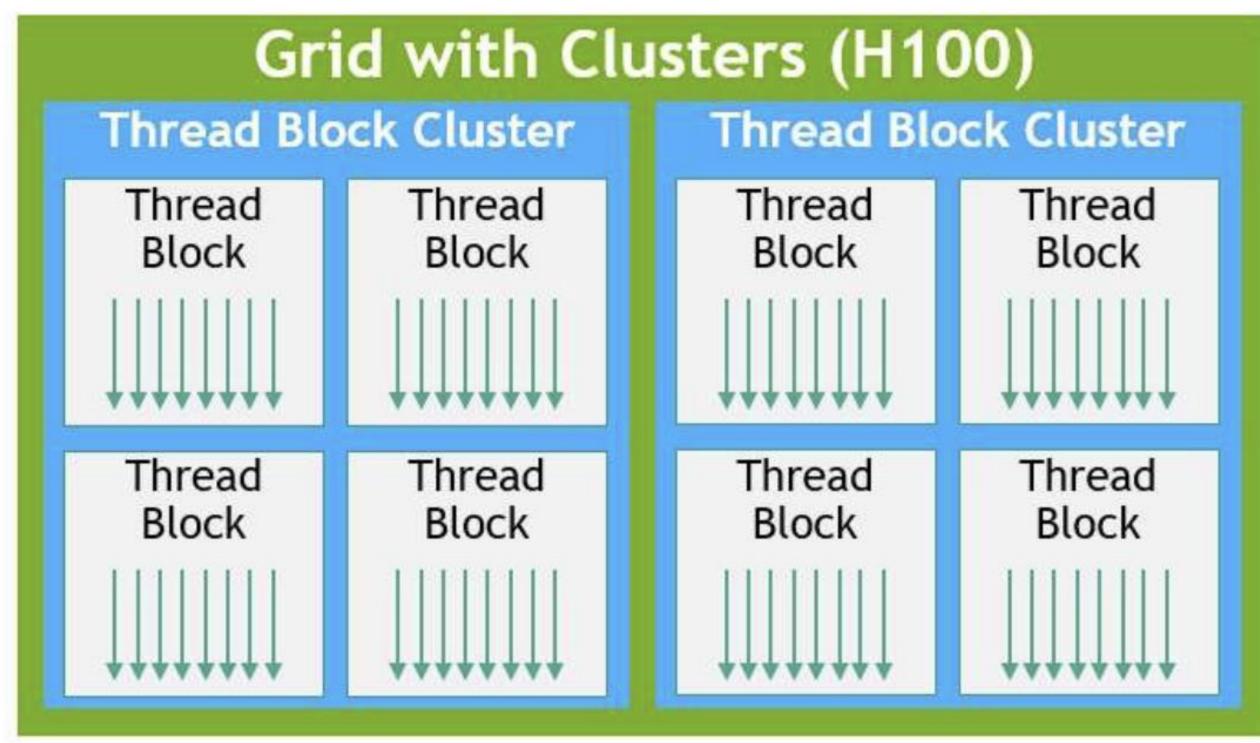


## But how do we even represent a program that does this?

- We do have GPCs that could support this
- But CUDA says all CTAs are concurrent and independently scheduled
- We have no way of forcing simultaneous execution
- Solution: expose this as a programmable hierarchy



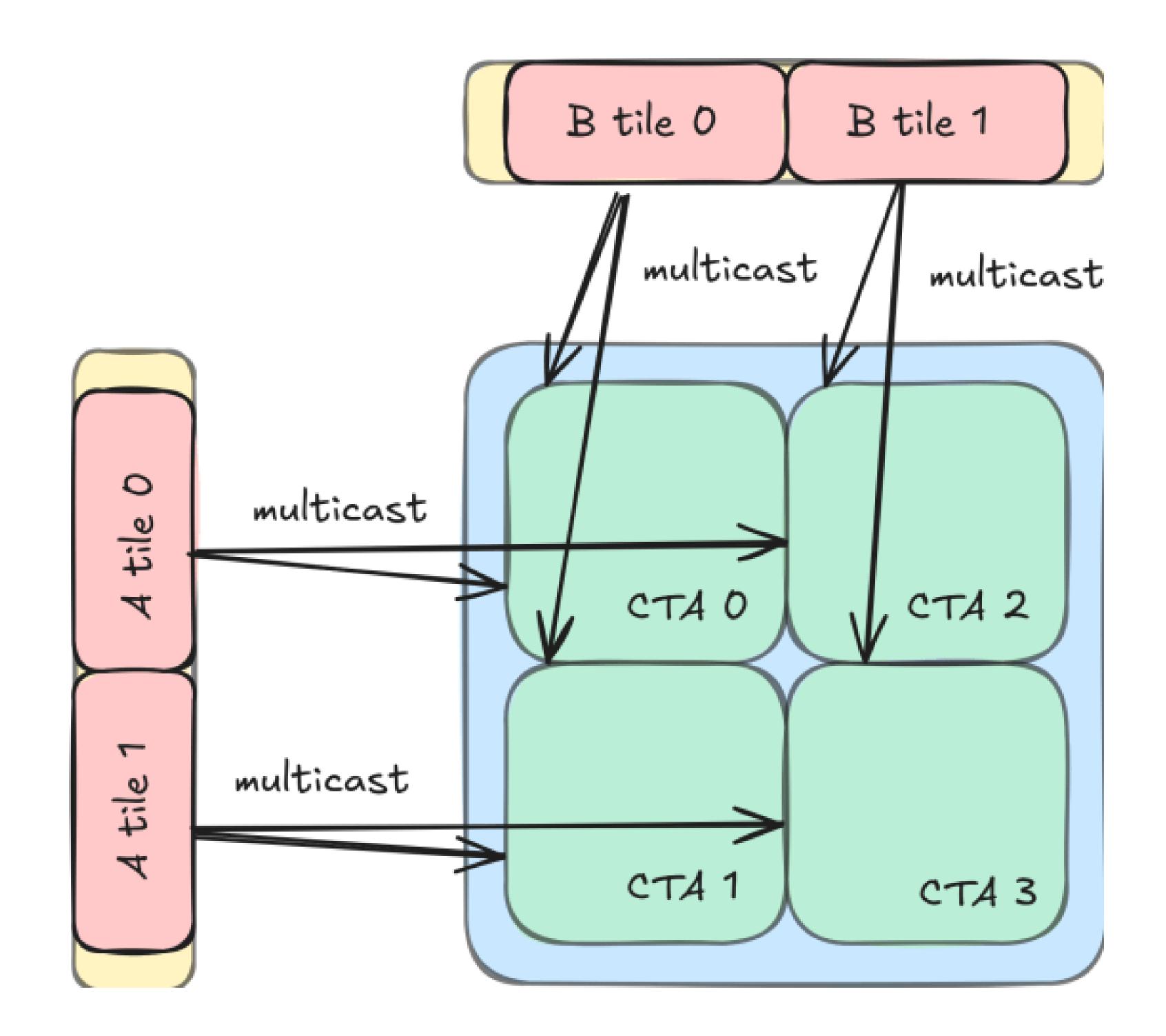






#### Aside: Think about our barriers

- CTA0 is loading half of A for both CTAs 0 and 2
- CTA0 is loading half of B for both CTAs 0 and 1
- With our current barriers, how do we wait on CTA0 from CTA 1/2?
- Solution: Atomic in global memory?
- Solution: Atomic in L2?
- Solution: DSMEM distributed shared memory
- CTAs can treat remote SMEM as local SMEM
- PGAS programming model
- Local crossbar within a GPC much more palatable
- This allows our barriers to arrive on remote barriers
- Wait is still on local barrier only







```
MMA
```

```
// Mainloop
CUTLASS_PRAGMA_NO_UNROLL
 for ( ; k_tile_count > 0; k_tile_count)
 // WAIT on smem_pipe_read until its data are available
 auto barrier_token = pipeline.consumer_try_wait(smem_pipe_read);
  pipolino concumor wait (cmom pipo road barrier takan):
 int read_stage = smem_pipe_read.index();
 warpgroup_fence_operand(accum);
 // Unroll the K mode manually to set scale D to 1
 CUTLASS_PRAGMA_UNROLL
 for (int k_block = 0; k_block < size<2>(tCrA); ++k_block) {
   // (V, M, K) \times (V, N, K) => (V, M, N)
   cute::gemm(tiled mma tCrA( k block read stage) tCrB( k block read stage) accum):
   tiled_mma.accumulate_ = GMMA::ScaleOut::One;
 warpgroup_commit_batch();
 /// Wait on the GMMA barrier for K_PIPE_MMAS (or fewer) outstanding
 /// to ensure smem_pipe_write is consumed
 warpgroup_wait<K_PIPE_MMAS>();
 warpgroup_fence_operand(accum);
 // UNLOCK smem_pipe_release, done _computing_ on it
  pipeline.consumer_release(smem_pipe_release);
  // Advance smem_pipe_read and smem_pipe_release
  ++smem_pipe_read; ++smem_pipe_release;
// Wait on PIPE to be read
SYNCS.PHASECHK.TRANS64.TRYWAIT smem_bar_ptr_full, phase;
// Fill up MMA command pipeline
WARPGROUP.ARRIVE
HGMMA.64x128x16.F16 Rc, sdesc[URab].tnspA.tnspB, Rc, UP0
UIADD3.32 sdesc[Urab+0], #immA
UIADD3.32 sdesc[Urab+1], #immB
// repeat 1xHGMMA+2xUIDADD3 above 1/3/7 more times
WARPGROUP.DEPBAR.LE gsb0, 0x1
// Release SMEM stage for TMA to load into
SYNCS.ARRIVE.A1T0 smem_bar_ptr_empty_sm0, phase;
SYNCS.ARRIVE.A1T0 smem_bar_ptr_empty_sm1, phase;
```

### Speed of Light Hopper Mainloop

ASYNC in everything

```
TMA threads
// Acquire for PIPE+N to be consumed
SYNCS.TRY_WAIT.PHSCK smem_bar_ptr, phase;
// Set txcount for PIPE+N
SYNCS.ARRIVE.TRANS64 smem_bar_ptr, txcount;
// Issue TMA loads that will commit themselves
UTMALDG.2D URa, UR[smem_ptr], smem_bar_ptr, UR[gdesca]
UTMALDG.2D URb, UR[smem_ptr], smem_bar_ptr, UR[gdescb]
// Mainloop
CUTLASS_PRAGMA_NO_UNROLL
for ( ; k_tile_count > 0; --k_tile_count)
 // LOCK smem_pipe_write for _writing_
 pipeline.producer_acquire(smem_pipe_write);
 // Copy gmem to smem for *k_tile_iter
 using BarrierType = typename MainloopPipeline::ProducerBarrierType;
 BarrierType* tma_barrier = pipeline.producer_get_barrier(smem_pipe_write);
 int write_stage = smem_pipe_write.index();
 copy(mainloop_params.tma_load_a.with(*tma_barrier, mcast_mask_a),
      tAgA(_,_,,*k_tile_iter), tAsA(_,_,,write_stage));
 copy(mainloop_params.tma_load_b.with(*tma_barrier, mcast_mask_b),
      tBgB(_,_,,*k_tile_iter), tBsB(_,_,,write_stage));
 ++k_tile_iter;
 // Advance smem_pipe_write
```

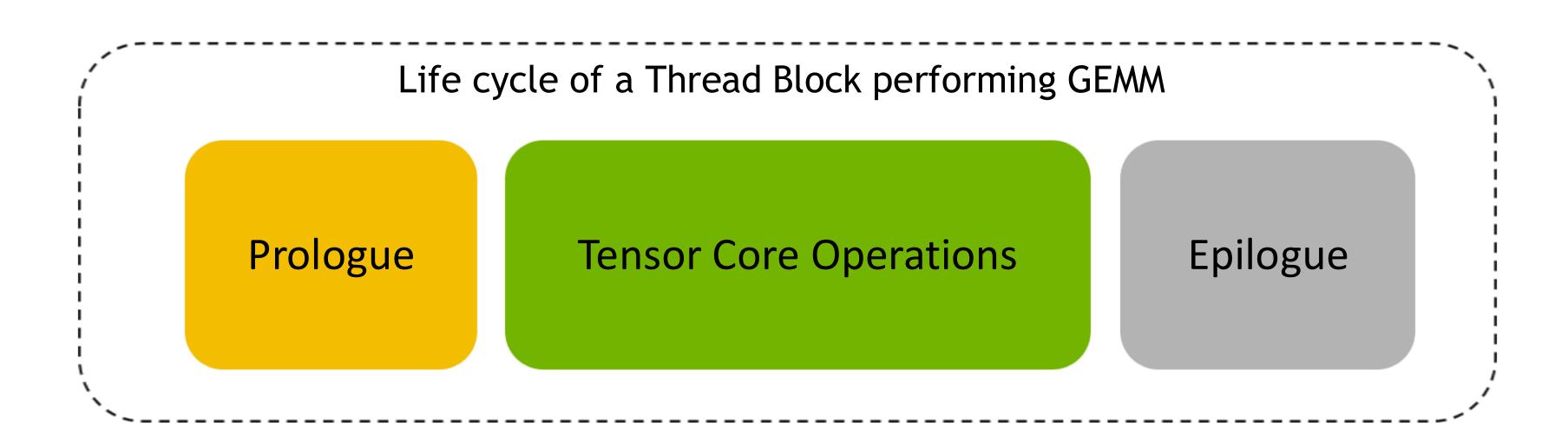
TMA

++smem\_pipe\_write;





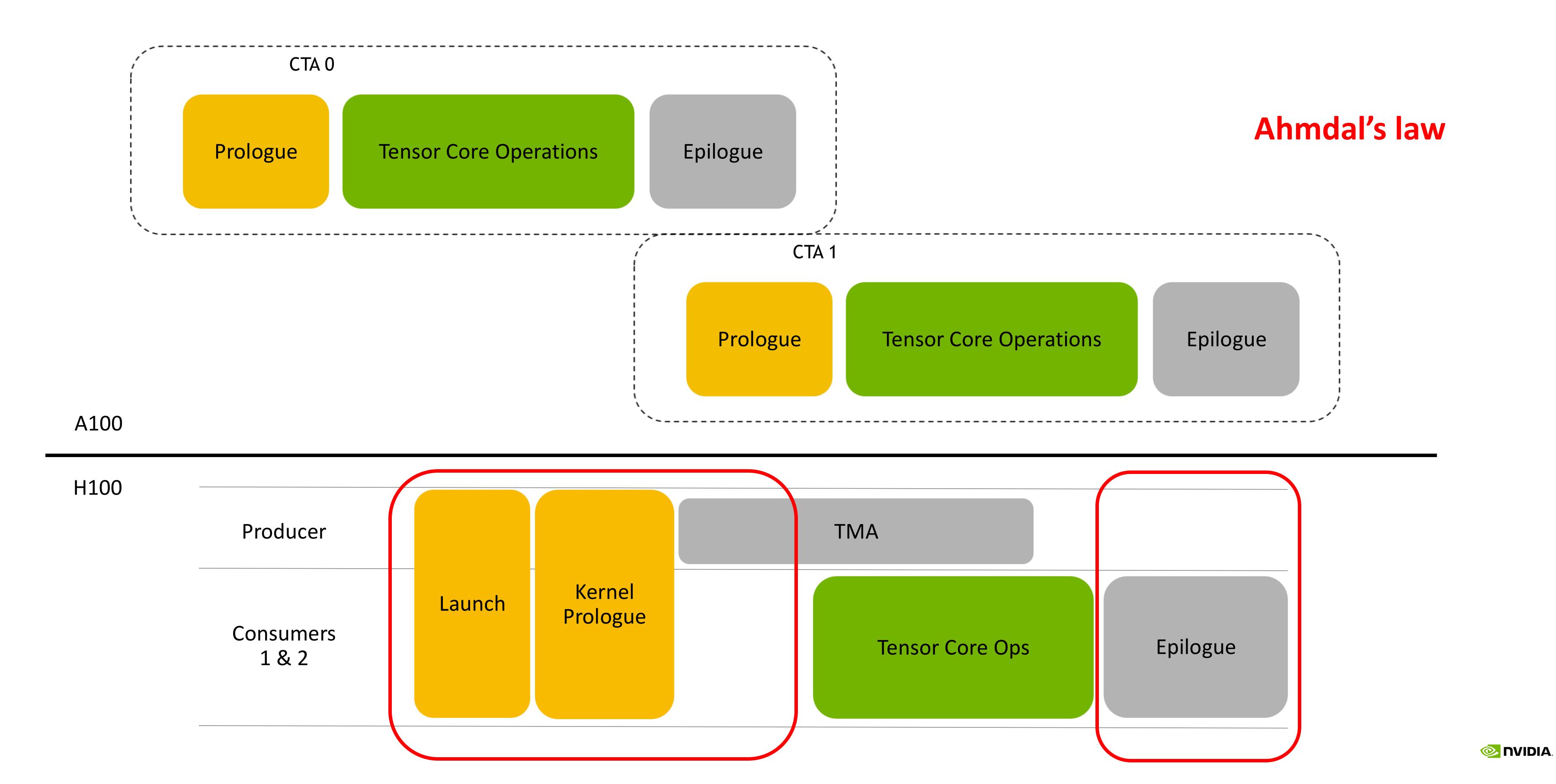
#### Life of a GEMM kernel



- Prologue and Epilogue are components of the GEMM kernel which involve non-tensor core operations and often latency or bandwidth bound.
- Typically hidden via multiple concurrently running ThreadBlock / SM
- With deep software pipelines it becomes a tricky problem (due to lack of shared memory capacity)

# We lost our 2 CTA / SM occupancy

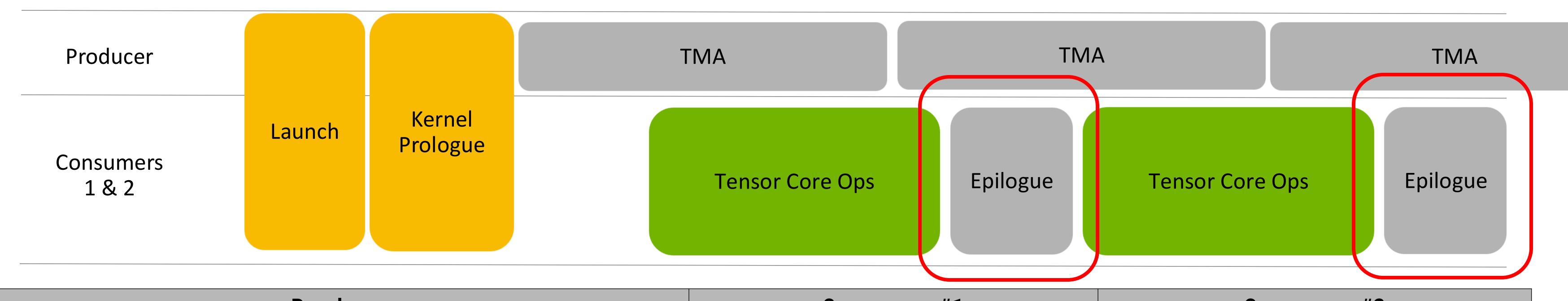
Don't have enough SMEM/RMEM for > 1 CTA / SM



## Warp-Specialized Persistent Kernels

- Idea: amortize the fixed costs across multiple output tiles
- Instead of launching all the CTAs, only Lauch as many CTAs as the number of SMs
- Implement tile scheduling in software instead of relying on blockIdx.x/y/z

#### Ahmdal's law

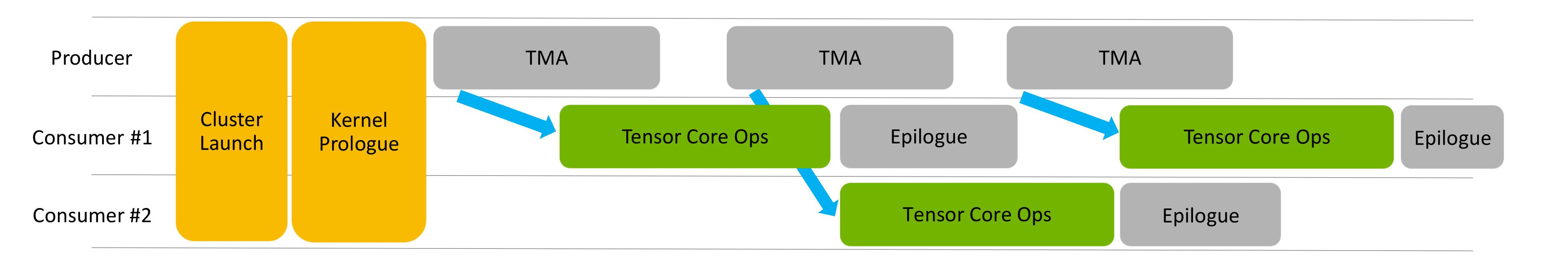


| Producer                                                                                                                                 |       | Consumer #1                                                                                                                          | Consumer #2        |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|
| PersistentTileSchedulerSm90 scheduler(problem_shape, blk_shape, cluster_shape)                                                           |       |                                                                                                                                      |                    |  |  |  |
| // Data in via TMA                                                                                                                       |       | // Mainloop, epilogue, and da                                                                                                        | ata out            |  |  |  |
| <pre>while (work_tile_info.is_vali     collective_mainloop.dma()     scheduler.advance_to_next_w     work_tile_info = scheduler. }</pre> | ork() | <pre>while (work_tile_info.is_val:    collective_mainloop.mma()    scheduler.advance_to_next_v    work_tile_info = scheduler }</pre> | work(NumConsumers) |  |  |  |

## How do we hide the epilogue now?

Warp-specialized Ping Pong Persistent Schedule

- Observe: we already have software persistent scheduling now
- What if we pipelined the execution of multiple tiles w.r.t. each other?
- Ping Pong: 2 consumers warp-groups alternate between math and epilogue of different work tiles
- Tradeoff: smaller tile shapes for better epilogue hiding
- Heuristic: smaller K shapes better with ping pong, larger better with non-ping-pong (cooperative)

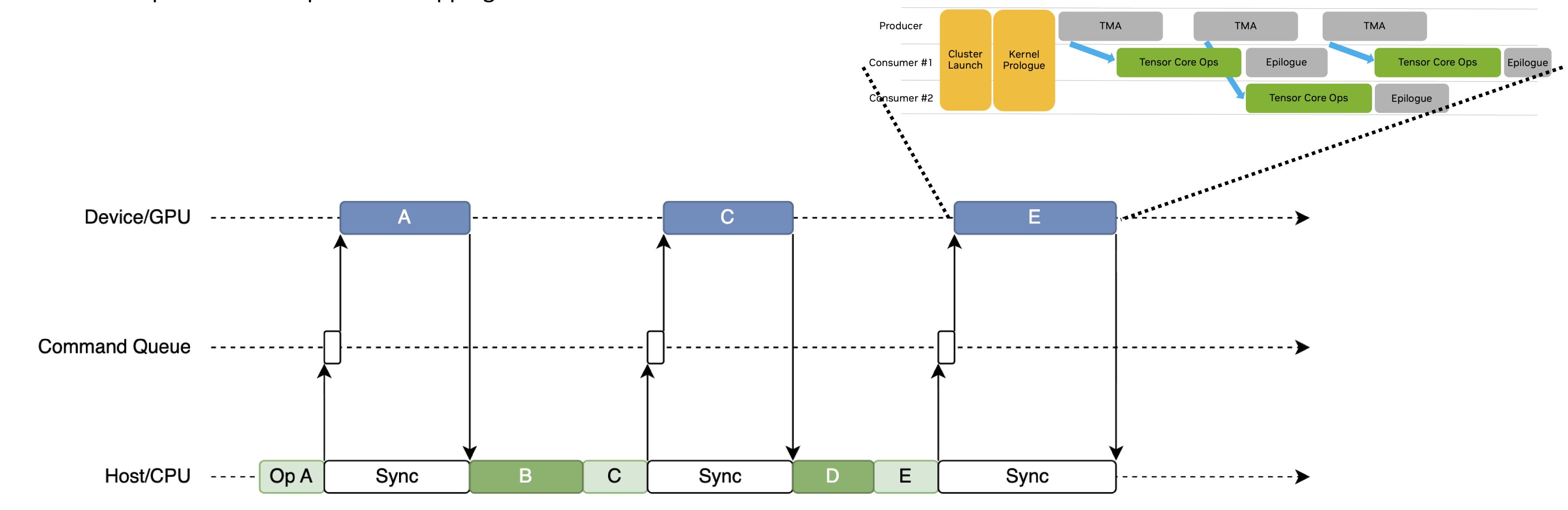




## End to end optimization requires overlapping across kernels

Optimizing a model graph end to end

- Persistence only helps for multi—wave problems
- Strong scaling for single wave problems is hard
- The problem is exacerbated every time you add more SMs
- End to end optimization requires overlapping across kernels

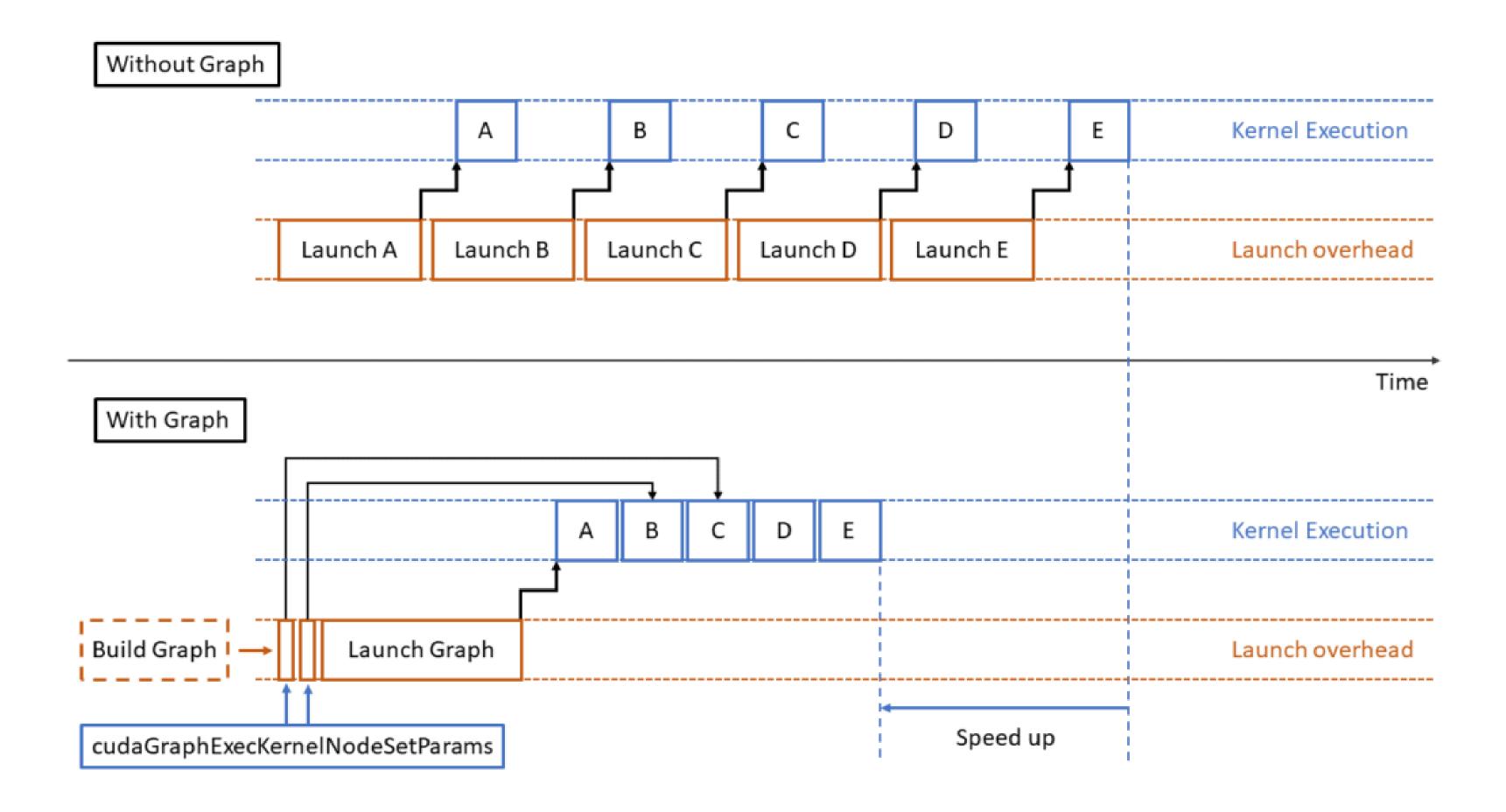


## End to end model optimization

#### Zooming out beyond just a single kernel

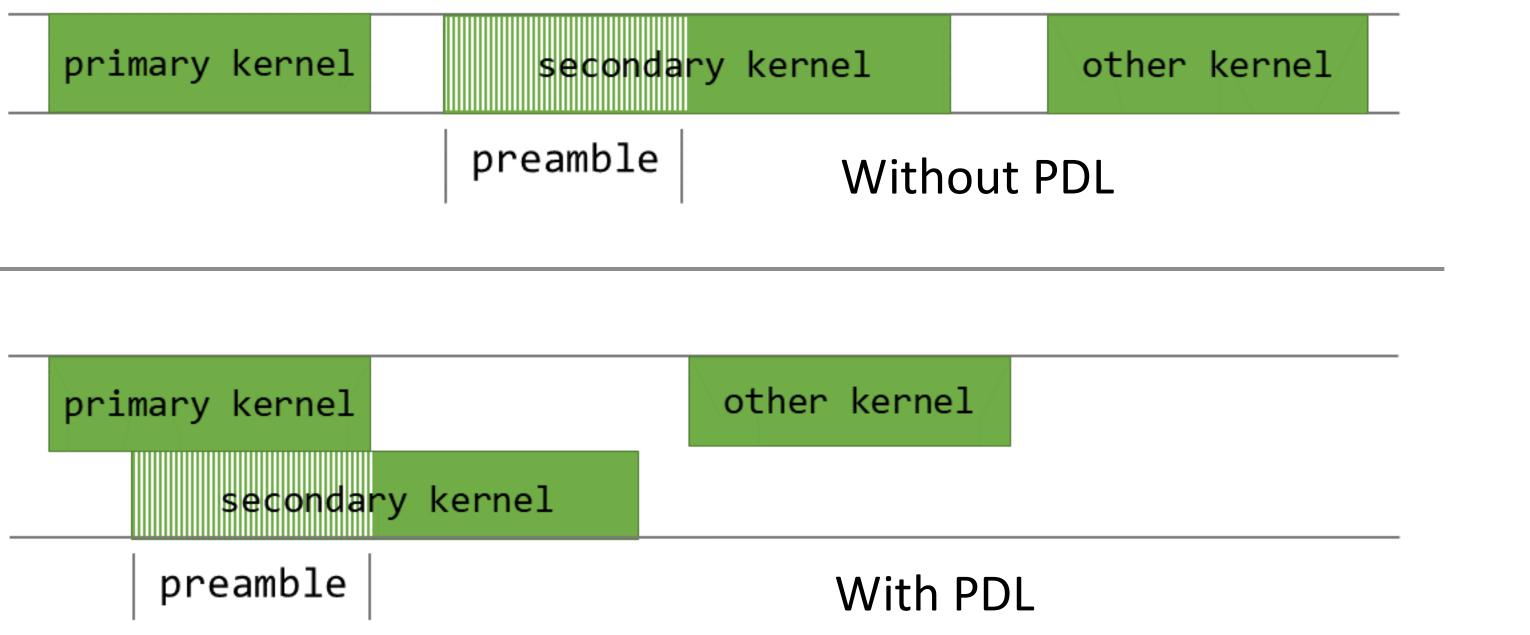
- Grid launches take 2-6 microseconds
- This sounds tiny but if you have tons of small kernels b2b it adds up
- What if we could enqueue an entire graph of kernels onto the GPU?
- CUDA Graphs!

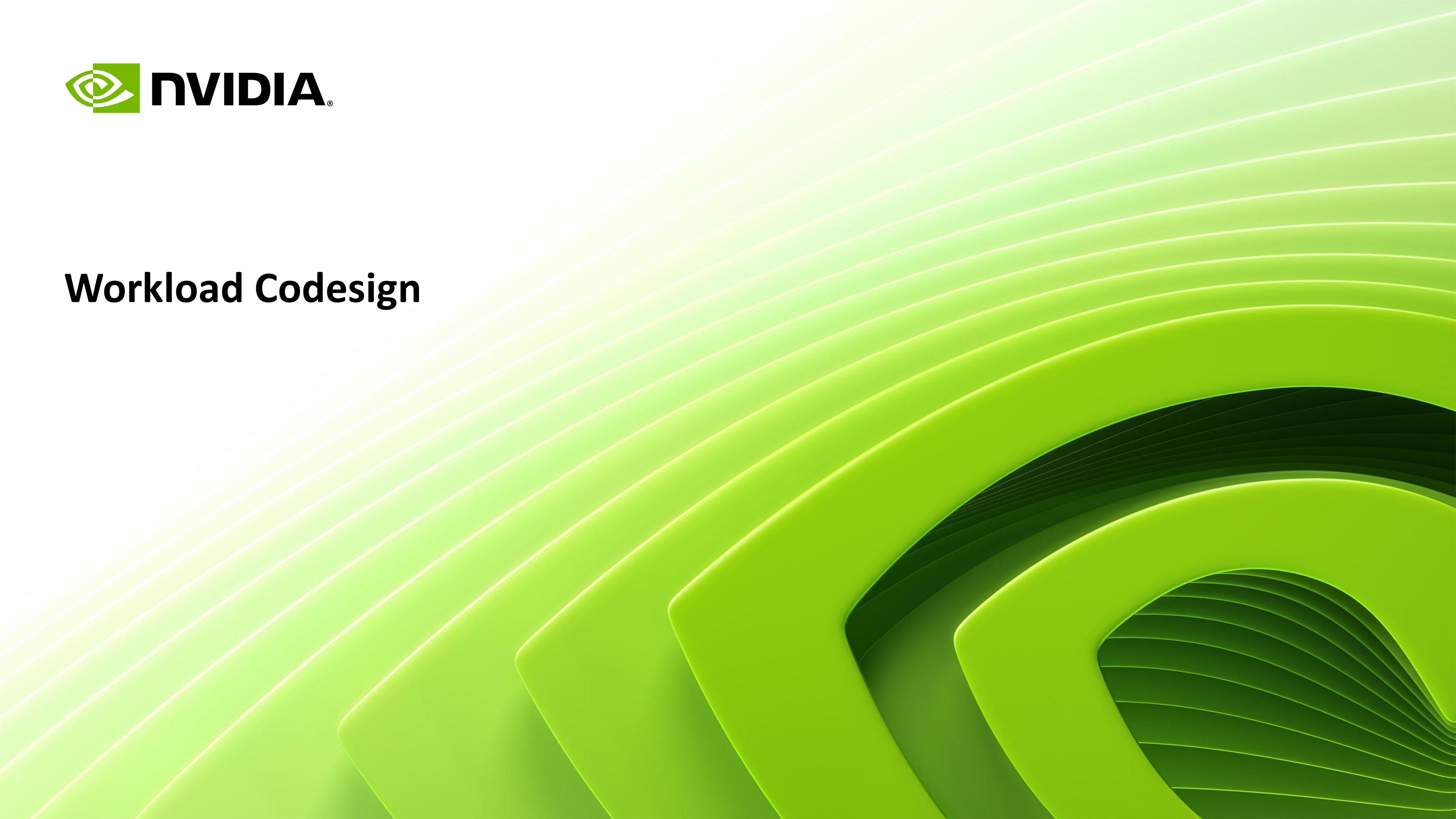
- Cold start prologue can be long
- Even within a stream, there are finer grained dependencies
- E.g. inference kernels only need to wait on activations
  - Weights are unchanging and can be loaded
- Programmatic Dependent Launch (PDL) forgoes member.gpu
- Kernels can launch without satisfying stream ordering
- Programmer inserts dep points in the kernels



B2B grids with and without CUDA graphs

#### B2B grids with and without PDL

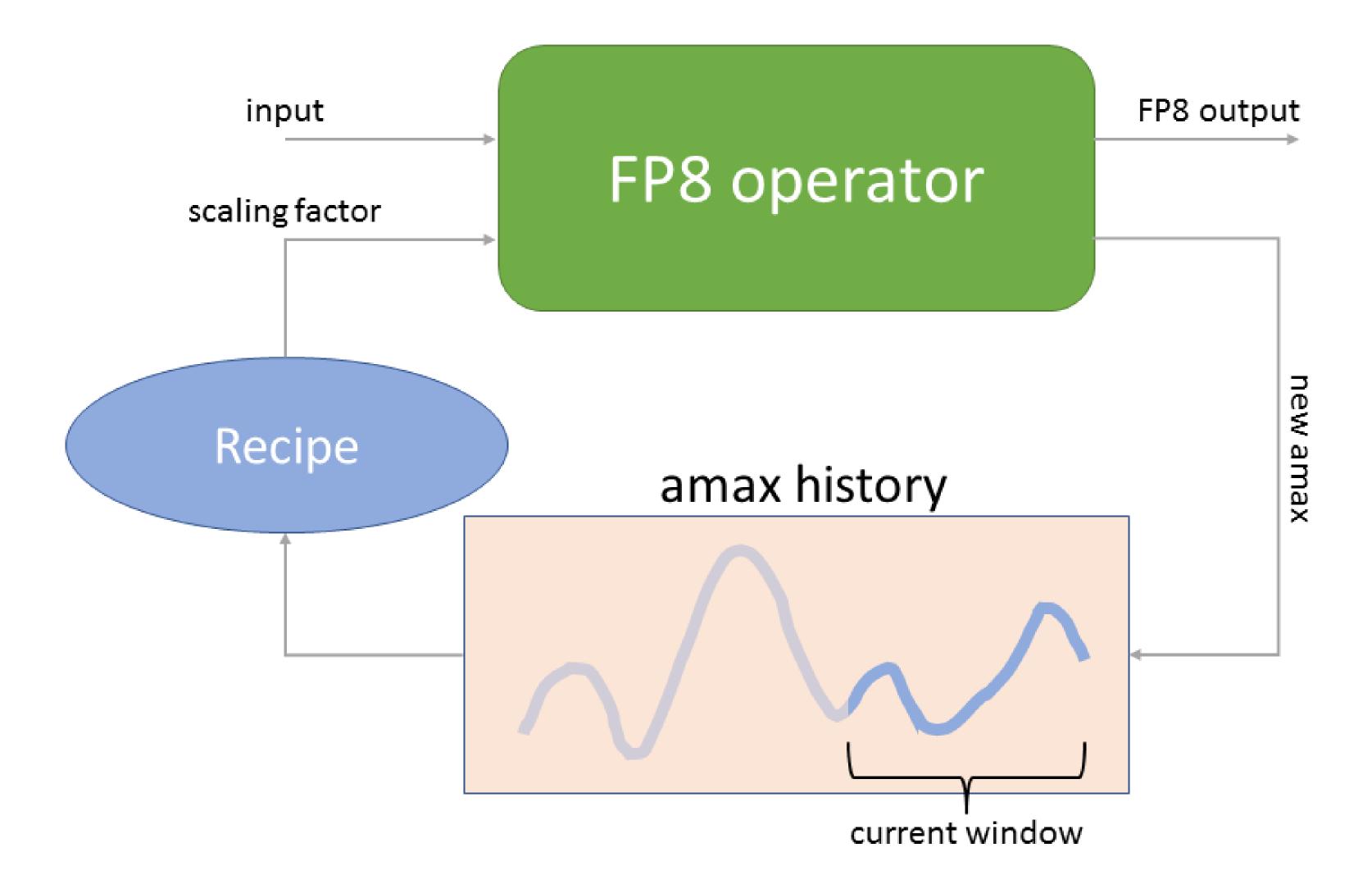




### 16b floats are so wasteful

What if we could run with 8b floats instead

- Lower precision add/mul is way faster to scale with
- Why?
- Data movement is sin
- Multiplicative FLOP/s gain for bit width reduction => higher perf/W
- But convergence gets really hard at low precisions
- Solution: co-design the model training recipe



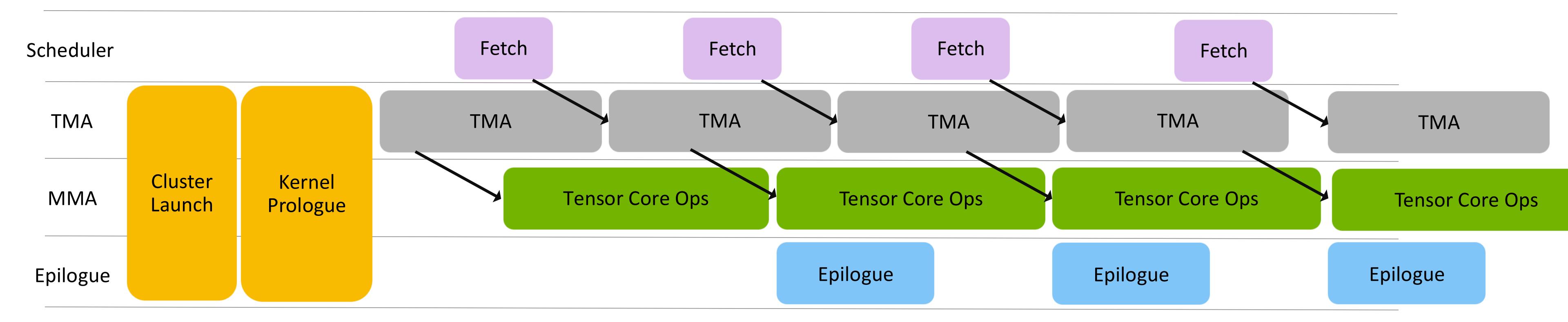




## Blackwell kernel schedule at a glance

Generalization of the Hopper ping-pong kernel enabled by TMEM

- Accumulators being in TMEM allows for separate threads to access it as a shared resource
- Concurrent execution of MMA and epilogue on different work units







## Conclusion

First principles are all you need to know Everything else is all *details*But the details are so so fun:D

