
Evolving Ampere to Hopper

Vijay Thakkar (@__tensorcore__)

- Senior DL Compute Architect @ NVIDIA

- “Part time” PhD student @ HPC Garage, GaTech

MIT 6.S894: Accelerated Computing Lecture 8 - 2025/10/23



How do we achieve this?

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/



Making number go up
Aka how do we fight physics



First Principles
These are all you need to know

Hardware and physics:

• Moore’s law is still alive and kicking but slowing down

• Dennard scaling is dead – per xtor energy will scale extremely slowly now

• We are in a power limited regime of silicon engineering

• Data movement is sin

• Cost of moving data is 100x-100000x higher that computing on it

• Latency of moving data cannot be improved

Software and algorithmic:

• Matix multiply has infinite potential for data-reuse

• Arbitrarily high arithmetic intensity

• Ahmdal’s law is the death of embarassingly parallel workloads



Lowest hanging fruit first
Can we just spam more cores???

A100: 2019
Reticle size die on TSMC N7
52 giga-xTors

H100: 2021
Reticle size die on TSMC N5
80 giga-xTors

~ 54% density increase

Use it to add 22% more SMs (108 -> 132)
We are still 2.3x away from our scaling goal 



Aside: Strong v. Weak Scaling
Would you rather fight 100    sized    or 1   sized 

• Weak scaling:

• Same time to solution for 2x larger problem with 2x more 
workers

• Requires embarassingly parallel workload AND

• An opulence of scaling execution units

• Strong scaling:

•  2x lower time to solution for the same problem size

https://newsletter.semianalysis.com/p/nvidia-tensor-core-evolution-from-volta-to-blackwell



We have to strong scale

• Ampere tensor core runs at 8 clocks per 16x8x16 instruction

• Can we just make it run in 4 clk instead? … Not so simple

• Increases b/w requirements on the VRF by 2x

• Data must load from SMEM -> RMEM 2x fewer clocks too

• This is _insanely_ hard to do

• Limited by wire parasitics and speed of electrons

• Pipeline deeper instead – grow RMEM size???

• Add banks?

• How do we even hide issue latencies of HMMA/LDSM

• Can’t scale clock speeds either – power is O(frequency3)

And there is no free lunch here …

https://www.researchgate.net/figure/Power-and-frequency-relationship-at-linear-and-cubic-zones_fig3_323940362



Ampere Mainloop
ASYNC in SMEM and ILP in RMEM

• Async gmem->smem copy (3 stage pipeline)

• Deeper pipelines from async copies and less register pressure

• Tight instruction interleaving between LDSM+HMMA for peak utilization

• 2 CTA / SM occupancy for hiding epilogue

• 256 thread CTAs



Speed of Light Ampere Mainloop
Async in SMEM + ILP in RMEM

CUTLASS_PRAGMA_NO_UNROLL
for ( ; k_tile_count > -(TILE_STAGES-1); --k_tile_count)
{
 // Pipeline the outer products with a static for loop.
 // Note, the for_each() function is required here to ensure `k_block` is of type Int<x>.
 for_each(make_int_sequence<K_BLOCK_MAX>{}, [&] (auto k_block)
 {
  if (k_block == K_BLOCK_MAX - 1)
  {
   // Slice the smem_pipe_read smem
   tCsA_p = tCsA(_,_,_,smem_pipe_read);
   tCsB_p = tCsB(_,_,_,smem_pipe_read);

   // Commit the smem for smem_pipe_read
   cp_async_wait<TILE_STAGES-2>();
   __syncthreads();
  }

  // Load A, B shmem->regs for k_block+1
  auto k_block_next = (k_block + Int<1>{}) % K_BLOCK_MAX; // static
  copy(smem_tiled_copy_A, tCsA_p(_,_,k_block_next), tCrA_copy_view(_,_,k_block_next));
  copy(smem_tiled_copy_B, tCsB_p(_,_,k_block_next), tCrB_copy_view(_,_,k_block_next));
 

  // Copy gmem to smem before computing gemm on each k-pipe
  if (k_block == 0)
  {
   copy(gmem_tiled_copy_A, tAgA(_,_,_,*k_tile_iter), tAsA(_,_,_,smem_pipe_write)); // LDGSTS
   copy(gmem_tiled_copy_B, tBgB(_,_,_,*k_tile_iter), tBsB(_,_,_,smem_pipe_write)); // LDGSTS
   cp_async_fence();
   if (k_tile_count > 0) { ++k_tile_iter; }

   // Advance the pipe -- Doing it here accounts for K_BLOCK_MAX = 1 (no rmem pipe)
   smem_pipe_write = smem_pipe_read;
   ++smem_pipe_read;
   smem_pipe_read = (smem_pipe_read == TILE_STAGES) ? 0 : smem_pipe_read;
  }

  // Thread-level register rank-2 gemm for k_block
  cute::gemm(tiled_mma, accum, tCrA(_,_,k_block), tCrB(_,_,k_block), src_accum);

 }); // k_block
} // k_tile

// Issue async gmem loads for PIPE+2
@p0 LDGSTS gmem[Rx+0], smem[Rx+0];
@p1 LDGSTS gmem[Rx+1], smem[Rx+1];
@p2 LDGSTS gmem[Rx+3], smem[Rx+2];
@p3 LDGSTS gmem[Rx+4], smem[Rx+3];

// Wait for PIPE to be visible
__cp_async_fence();
__cp_async_wait<N-2>();

// Issue “async” smem loads for HMMA+1/2
LDSM smem[Rm+0], Ra0, Ra1, Ra2, Ra3
LDSM smem[Rm+1], Rb0, Rb1, Rb2, Rb3

// Issue MMA
HMMA Ra0, Rb01, Rb02, Rc0
HMMA Ra1, Rb01.reuse, Rb02.reuse, Rc0
HMMA Ra2, Rb02, Rb03, Rc0
HMMA Ra3, Rb01.reuse, Rb02.reuse, Rc0

// repeat 2xLDSM+4xHMMA over the tile



Exploit the workload

• Matmul is specifically amenable to strong scaling

• We have “infinite” arithmetic intensity

• AI = θ((𝑚 ∗ 𝑛) / 𝑘)

• Ampere TC is warp-wide

• 32 threads

• 16x8x16

• 8 clocks

• But our SMs have 4 sub-partitions that run in parallel

• Already issuing 4 separate MMAs across them



Configurable N dimension in range(8, 256, 8)

SM90 WGMMA spans all 4 sub-partitions 



But how do we feed the beast?

• We cut B matrix reads by a factor of 4 BUT

• The instruction is now massive

• Ampere: 16x8x16

• Hopper: 64x128x16

• 8x more data per MMA

• And it runs 2x faster per clock

• Could we load 64x16 + 128x16 tiles for each into RMEM?

• We have to keep (64x16) + (128x16) + (64x128) live in registers

• Blows up register budgets

• Exposes the entire load latency – Ahmdal’s law



What's new in Hopper

GEMM A
matrix

GEMM C
matrix

GEMM B
matrix

Tensor cores reuse data directly from in shared memory

Corollary: the tensor core is now explicitly async too in the same way LDGSTS is!



We strong scaled our tensor core 
• Fed it with data from smem directly

• Made it async since its so big now

• Victory?!

• But if you were to run this on H100 silicon (LDGSTS + GMMA)

• You would get no extra performance at all

• We still have latencies to contend with

• GMEM load latencies did not improve gen-on-gen

• If anything they got worse

• Moving data around in wires cannot get faster

• How do we tolerate higher gmem latencies?

• Builder smaller chips?

• Stack memory?

• Grow caches?

• Asynchrony is our best countermeasure to Ahmdal’s law

A100 SMEM: 164 KiB / SM

H100 SMEM: 256 KiB / SM

1.56x



Are we there yet?

• We strong scaled our tensor core

• Fed it with data from smem directly

• Grew pipeline stage counts by 1.56x (3->4/5)

• Still not enough, but we get 20% faster

• How do we get even faster?

• MOAR cache!

• Give up on 2 CTA / SM occupancy

• Write kernels with 1 CTA / SM occupancy

• Use all the 256 KiB of SMEM for 1 CTA

• Gets us to 6/7 stages – good enough!

• But exposes the epilogue and prologue … 

• We will come back to this later, let’s press on for now

• We have bigger issues for now



We have not improved GMEM loads

• LDGSTS is now the main bottleneck in many ways:

• Uses too many vector registers

• Uses too many issue slots for address computation

• Predication is hard to do and takes up predicate registers

• But we know what layout of smem our tensor core is going to consume

• Not much programmer freedom here

• We don’t need the generality of SIMT load

• Introduce a new data loading engine specifically for affine tensor load/store

• Introduce a “Uniform Datapath” and “Uniform Registers”



This solves our register spills
And large tile perf is now SOL but …

• Small tile shape performance still sucks

• You profile the workload and find out that the loop overheads are killing you now

• Overhead clocks longer latency than the tile shape MMA clocks

• Setting up descriptors, incrementing offsets, arriving on barriers etc.

• How do we fix this?

• We could just use big tile shapes only – bigger MMAs are async for longer

• BUT that’s not strong scaling

• How do we strong scale?

• Core problem: TMA -> MMA -> TMA takes too many cycles

• We are bound by issue latencies of a long serial program

• These are not true deps – barriers are what establish ordering already

• What if we could break the loops into separate loops to issue asap!?

• TMA is single thread and we have warp-scheduling already?



What if we split the TMA and MMA loops into separate loops?

Tensor Core Ops

TMA

Epilogue

Producer

Consumers
1 & 2

Warp-Specialized Kernels

Launch
Kernel

Prologue

• 1x TMA thread that - only issues TMAs

• 2x MMA warpgroups - only issue MMA

• But how do we synchronize this?

• We relied on cp.async.fence/commit() and __syncthreads() in the past

• But they assume fully convergent SIMT execution

• Solution: invent new barrier that lives in shared memory and programmable by the user

• Configurable arrive counts by the user that allow partial arrives

• In smem for visibility by separate sets of specialized threads

• Program tx count for TMA so that it can “commit” the loads itself



But we are spilling registers again!!!
Warp-Specialized Kernels

• 256 threads are still needed for MMA to use all 512 registers in the SM

• But we now added a new workgroup for TMA for a total of 384 threads / CTA

• CUDA programming model requires all warps use the same number of registers

• round(512 / 3, 8) = 168 registers / thread

• Not enough for our massive MMA output matrices + other epilogue stuff

• Grow register file? But that would be so wasteful, we just added uniform registers

• TMA uses no registers – all 168 registers in that warpgroup are wasted

Tensor Core Ops

TMA

Epilogue

Producer

Consumers
1 & 2

Launch
Kernel

Prologue



What if we could reallocate registers between warps?

Start off all threads in the CTA with 168 registers / thread

Tensor Core Ops

TMA

Epilogue

Producer

Consumers
1 & 2

Launch
Kernel

Prologue
Handoff 
Registers

Donate register ownership from TMA to MMA threads the “prologue”



Phew, are we there now??

• We have strong scaled our tensor core

• TMA: data loading accelerator with minimal overheads

• Added new barriers for sub-CTA sync

• Implemented register reconfiguration

• Changed kernels to be warp-specialized

• So like any good engineer, you go and profile your workload

• Only to find that for very large problems, L2 read b/w is our bottleneck now

• Solution: widen L2 read ports?



Overcoming L2 b/w limits

• L2 <> GPC is a massive crossbar – widening it is not an option

• Recall, we have infinite arithmetic intensity

• How can we exploit that to get L2 data reuse?

• We have many separate CTAs

• We usually tile the output MxN in a 2D grid

• Projections of CTAs along A and B load the same data

• Our GPU already has GPCs as a hierarchy

• What if we could load from L2 only once to the GPC

• And then broadcast that data to all the SMs that need it?

Exploit the workload properties



But how do we even represent a program that does this?

• We do have GPCs that could support this

• But CUDA says all CTAs are concurrent and independently scheduled

• We have no way of forcing simultaneous execution

• Solution: expose this as a programmable hierarchy



Aside: Think about our barriers

• CTA0 is loading half of A for both CTAs 0 and 2

• CTA0 is loading half of B for both CTAs 0 and 1

• With our current barriers, how do we wait on CTA0 from CTA 1/2?

• Solution: Atomic in global memory?

• Solution: Atomic in L2?

• Solution: DSMEM – distributed shared memory

• CTAs can treat remote SMEM as local SMEM

• PGAS programming model

• Local crossbar within a GPC – much more palatable

• This allows our barriers to arrive on remote barriers

• Wait is still on local barrier only



Anatomy of an H100 GEMM



// Mainloop
CUTLASS_PRAGMA_NO_UNROLL
for ( ; k_tile_count > 0; --k_tile_count)
{
 // LOCK smem_pipe_write for _writing_
 pipeline.producer_acquire(smem_pipe_write);

 //
 // Copy gmem to smem for *k_tile_iter
 //

 using BarrierType = typename MainloopPipeline::ProducerBarrierType;
 BarrierType* tma_barrier = pipeline.producer_get_barrier(smem_pipe_write);

 int write_stage = smem_pipe_write.index();
 copy(mainloop_params.tma_load_a.with(*tma_barrier, mcast_mask_a),
   tAgA(_,_,_,*k_tile_iter), tAsA(_,_,_,write_stage));
 copy(mainloop_params.tma_load_b.with(*tma_barrier, mcast_mask_b),
   tBgB(_,_,_,*k_tile_iter), tBsB(_,_,_,write_stage));
 ++k_tile_iter;

 // Advance smem_pipe_write
 ++smem_pipe_write;

}

Speed of Light Hopper Mainloop
ASYNC in everything

// Mainloop
CUTLASS_PRAGMA_NO_UNROLL
for ( ; k_tile_count > 0; --k_tile_count)
{
 // WAIT on smem_pipe_read until its data are available
 auto barrier_token = pipeline.consumer_try_wait(smem_pipe_read);
 pipeline.consumer_wait(smem_pipe_read, barrier_token);

 int read_stage = smem_pipe_read.index();
 warpgroup_fence_operand(accum);
 warpgroup_arrive();
 // Unroll the K mode manually to set scale D to 1
 CUTLASS_PRAGMA_UNROLL
 for (int k_block = 0; k_block < size<2>(tCrA); ++k_block) {
  // (V,M,K) x (V,N,K) => (V,M,N)
  cute::gemm(tiled_mma, tCrA(_,_,k_block,read_stage), tCrB(_,_,k_block,read_stage), accum);
  tiled_mma.accumulate_ = GMMA::ScaleOut::One;
 }
 warpgroup_commit_batch();

 /// Wait on the GMMA barrier for K_PIPE_MMAS (or fewer) outstanding 
 ///  to ensure smem_pipe_write is consumed
 warpgroup_wait<K_PIPE_MMAS>();
 warpgroup_fence_operand(accum);

 // UNLOCK smem_pipe_release, done _computing_ on it
 pipeline.consumer_release(smem_pipe_release);

 // Advance smem_pipe_read and smem_pipe_release
 ++smem_pipe_read; ++smem_pipe_release;
}

// TMA threads
// Acquire for PIPE+N to be consumed
SYNCS.TRY_WAIT.PHSCK smem_bar_ptr, phase;

// Set txcount for PIPE+N
SYNCS.ARRIVE.TRANS64 smem_bar_ptr, txcount;

// Issue TMA loads that will commit themselves
UTMALDG.2D URa, UR[smem_ptr], smem_bar_ptr, UR[gdesca]
UTMALDG.2D URb, UR[smem_ptr], smem_bar_ptr, UR[gdescb]

// Wait on PIPE to be read
SYNCS.PHASECHK.TRANS64.TRYWAIT smem_bar_ptr_full, phase;

// Fill up MMA command pipeline
WARPGROUP.ARRIVE
HGMMA.64x128x16.F16 Rc, sdesc[URab].tnspA.tnspB, Rc, UP0
UIADD3.32 sdesc[Urab+0], #immA
UIADD3.32 sdesc[Urab+1], #immB
// repeat 1xHGMMA+2xUIDADD3 above 1/3/7 more times
WARPGROUP.DEPBAR.LE gsb0, 0x1

// Release SMEM stage for TMA to load into
SYNCS.ARRIVE.A1T0 smem_bar_ptr_empty_sm0, phase; 
SYNCS.ARRIVE.A1T0 smem_bar_ptr_empty_sm1, phase; 

MMA

TMA



End-to-end performance



Life of a GEMM kernel

• Prologue and Epilogue are components of the GEMM kernel which involve non-tensor core operations and often latency or bandwidth 
bound.

• Typically hidden via multiple concurrently running ThreadBlock / SM

• With deep software pipelines – it becomes a tricky problem (due to lack of shared memory capacity)

Tensor Core OperationsPrologue Epilogue

Life cycle of a Thread Block performing GEMM



We lost our 2 CTA / SM occupancy
Don’t have enough SMEM/RMEM for > 1 CTA / SM

Tensor Core OperationsPrologue Epilogue

CTA 0

Tensor Core OperationsPrologue Epilogue

CTA 1

Tensor Core Ops

TMA

Epilogue

Producer

Consumers
1 & 2

Launch
Kernel

Prologue

A100

H100

Ahmdal’s law 



Warp-Specialized Persistent Kernels

Producer Consumer #1 Consumer #2
PersistentTileSchedulerSm90 scheduler(problem_shape, blk_shape, cluster_shape)

// Data in via TMA 

    while (work_tile_info.is_valid_tile) {
     collective_mainloop.dma()
     scheduler.advance_to_next_work()
     work_tile_info = scheduler.get_current_work()

    }

// Mainloop, epilogue, and data out

  while (work_tile_info.is_valid_tile) {
    collective_mainloop.mma()
   scheduler.advance_to_next_work(NumConsumers)
   work_tile_info = scheduler.get_current_work()

  }

• Idea: amortize the fixed costs across multiple output tiles

• Instead of launching all the CTAs, only Lauch as many CTAs as the number of SMs

• Implement tile scheduling in software instead of relying on blockIdx.x/y/z

Tensor Core Ops

TMA

Epilogue

Producer

Consumers
1 & 2

Launch
Kernel

Prologue

TMA

Tensor Core Ops Epilogue

TMA

Ahmdal’s law 



How do we hide the epilogue now?

Tensor Core Ops

TMA

Epilogue

Tensor Core Ops Epilogue

Tensor Core Ops Epilogue

TMA TMAProducer

Consumer #1

Consumer #2

Warp-specialized Ping Pong Persistent Schedule

Cluster 
Launch

Kernel
Prologue

• Observe: we already have software persistent scheduling now

• What if we pipelined the execution of multiple tiles w.r.t. each other?

• Ping Pong: 2 consumers warp-groups alternate between math and epilogue of different work tiles

• Tradeoff: smaller tile shapes for better epilogue hiding

• Heuristic: smaller K shapes better with ping pong, larger better with non-ping-pong (cooperative)



End to end optimization requires overlapping across kernels
Optimizing a model graph end to end

• Persistence only helps for multi—wave problems

• Strong scaling for single wave problems is hard

• The problem is exacerbated every time you add more SMs

• End to end optimization requires overlapping across kernels



End to end model optimization
Zooming out beyond just a single kernel

• Grid launches take 2-6 microseconds

• This sounds tiny but if you have tons of small kernels b2b it adds up

• What if we could enqueue an entire graph of kernels onto the GPU?

• CUDA Graphs!

• Cold start prologue can be long

• Even within a stream, there are finer grained dependencies

• E.g. inference kernels only need to wait on activations

• Weights are unchanging and can be loaded

• Programmatic Dependent Launch (PDL) forgoes member.gpu

• Kernels can launch without satisfying stream ordering

• Programmer inserts dep points in the kernels

https://developer.nvidia.com/blog/constructing-cuda-graphs-with-dynamic-parameters/

B2B grids with and without CUDA graphs

B2B grids with and without PDL

Without PDL

With PDL



Workload Codesign



16b floats are so wasteful
What if we could run with 8b floats instead

• Lower precision add/mul is way faster to scale with

• Why?

• Data movement is sin

• Multiplicative FLOP/s gain for bit width reduction => higher perf/W

• But convergence gets really hard at low precisions

• Solution: co-design the model training recipe



Blackwell



Blackwell kernel schedule at a glance

Tensor Core Ops

TMA

Tensor Core Ops

Epilogue

Tensor Core Ops

TMA

MMA

Epilogue

Generalization of the Hopper ping-pong kernel enabled by TMEM

Cluster 
Launch

Kernel
Prologue

• Accumulators being in TMEM allows for separate threads to access it as a shared resource

• Concurrent execution of MMA and epilogue on different work units

TMA TMA

Scheduler Fetch

TMA

Epilogue Epilogue

Tensor Core Ops

TMA

Fetch Fetch Fetch



Conclusion

First principles are all you need to know
Everything else is all details
But the details are so so fun :D




	Slide 1:  Evolving Ampere to Hopper
	Slide 2: How do we achieve this?
	Slide 3: Making number go up
	Slide 4: First Principles
	Slide 5: Lowest hanging fruit first
	Slide 6: Aside: Strong v. Weak Scaling
	Slide 7: We have to strong scale
	Slide 8: Ampere Mainloop
	Slide 9: Speed of Light Ampere Mainloop
	Slide 10: Exploit the workload
	Slide 11: SM90 WGMMA spans all 4 sub-partitions 
	Slide 12: But how do we feed the beast?
	Slide 13: What's new in Hopper
	Slide 14: We strong scaled our tensor core 
	Slide 15: Are we there yet?
	Slide 16: We have not improved GMEM loads
	Slide 17: This solves our register spills
	Slide 18: What if we split the TMA and MMA loops into separate loops?
	Slide 19: But we are spilling registers again!!!
	Slide 20: What if we could reallocate registers between warps?
	Slide 21: Phew, are we there now??
	Slide 22: Overcoming L2 b/w limits
	Slide 23: But how do we even represent a program that does this?
	Slide 24: Aside: Think about our barriers
	Slide 25: Anatomy of an H100 GEMM
	Slide 26: Speed of Light Hopper Mainloop
	Slide 27: End-to-end performance
	Slide 28: Life of a GEMM kernel
	Slide 29: We lost our 2 CTA / SM occupancy
	Slide 30: Warp-Specialized Persistent Kernels
	Slide 31: How do we hide the epilogue now?
	Slide 32: End to end optimization requires overlapping across kernels
	Slide 33: End to end model optimization
	Slide 34: Workload Codesign
	Slide 35: 16b floats are so wasteful
	Slide 36: Blackwell
	Slide 37: Blackwell kernel schedule at a glance
	Slide 38: Conclusion
	Slide 39

