
Primitives
Ahmed Mahmoud

October 30, 2025

Lecture 9: Data-Parallel

Outline:
• Map
• Stencil
• Reduce
• Compaction
• Scan
• Segmented Scan

• Histogram
• Merge
• Reduction using tensor core!

Main idea: high-performance parallel
implementations of data-parallel primitives
exist, allowing programs written with these
primitives to run efficiently on the GPU.

Pattern #4: Stream Compaction

A B C D E F G H

A C D G

1 0 1 1 0 0 1 0

0 1 1 2 3 3 3 4

Input

Predicate Array

Exclusive scan

Scatter addresses
for true elements

Pattern #4.5: Split

Predicate 0 1 1 0 0 0 1 0 1 0
0 1 2 3 4 5 6 7 8 9

input key index

Destination
0 1 10 0 0 10 10
0 1 23 4 5 67 89

0 6 71 2 3 84 95

input key index

Pattern #4.5: Split

Predicate

0 0 1 2 2 2 2 3 3 4

0 1 1 0 0 0 1 0 1 0
0 1 2 3 4 5 6 7 8 9

Exclusive Scan

input key index

Destination
0 1 10 0 0 10 10
0 1 23 4 5 67 89

0 6 71 2 3 84 95

input key index

#ones

Pattern #4.5: Split

Predicate

0 0 1 2 2 2 2 3 3 4

0 1 1 0 0 0 1 0 1 0
0 1 2 3 4 5 6 7 8 9

Exclusive Scan

input key index

Destination of a one =
 total #zeros + #one before

Destination
0 1 10 0 0 10 10
0 1 23 4 5 67 89

0 6 71 2 3 84 95

input key index

Pattern #4.5: Split

Predicate

0 0 1 2 2 2 2 3 3 4

0 1 1 0 0 0 1 0 1 0
0 1 2 3 4 5 6 7 8 9

Exclusive Scan

input key index

Destination
0 1 10 0 0 10 10
0 1 23 4 5 67 89

0 6 71 2 3 84 95

input key index

Destination of a one =
 total #zeros + #one before

Destination of a zero =
 key index - #ones before

Load-balance Search

[A B C D E F] Alphabet (#size 6)

[2 1 0 0 7 3] Count

https://moderngpu.github.io/intro.html

“Coordinates work-items with the objects that scheduled them, allowing perfect load-balancing for functions that
expand and contract data”

Load-balance Search

[A B C D E F] Alphabet (#size 6)

[2 1 0 0 7 3] Count

[A A B E E E E E E E F F F] Output

https://moderngpu.github.io/intro.html

“Coordinates work-items with the objects that scheduled them, allowing perfect load-balancing for functions that
expand and contract data”

Load-balance Search

[A B C D E F] Alphabet (#size 6)

[2 1 0 0 7 3] Count

[0 0 1 4 4 4 4 4 4 4 5 5 5]

[A A B E E E E E E E F F F] Output

https://moderngpu.github.io/intro.html

“Coordinates work-items with the objects that scheduled them, allowing perfect load-balancing for functions that
expand and contract data”

Load-balance Search

[A B C D E F] Alphabet (#size 6)

[2 1 0 0 7 3] Count

[0 2 3 3 3 10 13] Count Scanned

[0 0 1 4 4 4 4 4 4 4 5 5 5]

[A A B E E E E E E E F F F] Output

https://moderngpu.github.io/intro.html

“Coordinates work-items with the objects that scheduled them, allowing perfect load-balancing for functions that
expand and contract data”

Load-balance Search

[A B C D E F] Alphabet (#size 6)

[2 1 0 0 7 3] Count

[0 2 3 3 3 10 13] Count Scanned

[0 0 0 0 0 0 0 0 0 0 0 0 0] init with zero

[0 0 1 4 4 4 4 4 4 4 5 5 5]

[A A B E E E E E E E F F F] Output

https://moderngpu.github.io/intro.html

“Coordinates work-items with the objects that scheduled them, allowing perfect load-balancing for functions that
expand and contract data”

Load-balance Search

[A B C D E F] Alphabet (#size 6)

[2 1 0 0 7 3] Count

[0 2 3 3 3 10 13] Count Scanned

[0 0 0 0 0 0 0 0 0 0 0 0 0] init with zero

[0 0 1 4 0 0 0 0 0 0 5 0 0] Scatter Alphabet index based on Count Scanned if Count != zero

[0 0 1 4 4 4 4 4 4 4 5 5 5]

[A A B E E E E E E E F F F] Output

https://moderngpu.github.io/intro.html

“Coordinates work-items with the objects that scheduled them, allowing perfect load-balancing for functions that
expand and contract data”

Load-balance Search

[A B C D E F] Alphabet (#size 6)

[2 1 0 0 7 3] Count

[0 2 3 3 3 10 13] Count Scanned

[0 0 0 0 0 0 0 0 0 0 0 0 0] init with zero

[0 0 1 4 0 0 0 0 0 0 5 0 0] Scatter Alphabet index based on Count Scanned if Count != zero

[0 0 1 4 4 4 4 4 4 4 5 5 5] Scan with max() operator

[A A B E E E E E E E F F F] Output

https://moderngpu.github.io/intro.html

“Coordinates work-items with the objects that scheduled them, allowing perfect load-balancing for functions that
expand and contract data”

Pattern #5.5: Segmented Scan
• Simultaneously performs scans on arbitrary contiguous

partitions of input sequences

• Example for when ⊕ is addition

3 1 7 0 4 1 6 3

3 4 11 0 4 5 6 9

Input

Inclusive
Segmented

Scan

Pattern #5.5: Segmented Scan
• Simultaneously performs scans on arbitrary contiguous

partitions of input sequences

• Same computational complexity as scan, but additionally must
keep track of segments using head flags

3 1 7 0 4 1 6 3

3 4 11 0 4 5 6 9

Input

Inclusive Segmented Scan

1 0 0 1 0 0 1 0Head flag

Pattern #5.5: Segmented Scan

Pattern #5.5: Segmented Scan
• Used in operating on sequence of variable-length sequences

1. For each vertex in a graph:
• For each edge incoming to the vertex

2. For each particle in simulation:
• For each particle within a cutoff radius

3. For each document in a collection
• For each word in the document

Pattern #5.5: Segmented Scan
• Used in operating on sequence of variable-length sequences

1. For each vertex in a graph:
• For each edge incoming to the vertex

2. For each particle in simulation:
• For each particle within a cutoff radius

3. For each document in a collection
• For each word in the document

• Two levels of parallelism to exploit but it’s irregular:
1. The size of edge lists
2. Particle neighbor list
3. Words per document

Pattern #5.5: Segmented Scan
Quicksort

1. Pick a pivot
2. Partition remaining elements into two sub-arrays
• Elements ≤ pivot
• Elements > pivot

3. Repeat for each sub-array until sorted

Pattern #5.5: Segmented Scan
Quicksort

[3 1 4 2 6 9 8 9] Input

Blelloch "Prefix sums and their applications." (1990).

previous pivot

Pattern #5.5: Segmented Scan
Quicksort

[3 1 4 2 X 9 8 9] Input

Blelloch "Prefix sums and their applications." (1990).

Pattern #5.5: Segmented Scan
Quicksort

[3 1 4 2 X 9 8 9] Input
[1 0 0 0 X 1 0 0] Flags

Blelloch "Prefix sums and their applications." (1990).

Pattern #5.5: Segmented Scan
Quicksort

[3 1 4 2 X 9 8 9] Input
[1 0 0 0 X 1 0 0] Flags
[3 0 0 0 X 9 0 0] Heads write pivot

Blelloch "Prefix sums and their applications." (1990).

Pattern #5.5: Segmented Scan
Quicksort

[3 1 4 2 X 9 8 9] Input
[1 0 0 0 X 1 0 0] Flags
[3 0 0 0 X 9 0 0] Heads write pivot
[3 3 3 3 X 9 9 9] Pivot (max-scan)

Blelloch "Prefix sums and their applications." (1990).

Pattern #5.5: Segmented Scan
Quicksort

[3 1 4 2 X 9 8 9] Input
[1 0 0 0 X 1 0 0] Flags
[3 0 0 0 X 9 0 0] Heads write pivot
[3 3 3 3 X 9 9 9] Pivot (max-scan)
[= < > < X = < =] Compare

Blelloch "Prefix sums and their applications." (1990).

Pattern #5.5: Segmented Scan
Quicksort

[3 1 4 2 X 9 8 9] Input
[1 0 0 0 X 1 0 0] Flags
[3 0 0 0 X 9 0 0] Heads write pivot
[3 3 3 3 X 9 9 9] Pivot (max-scan)
[= < > < X = < =] Compare

[1 2 3 4 X 8 9 9] 2-way Seg Split
 (req: segmented scan)

Blelloch "Prefix sums and their applications." (1990).

Pattern #6: Histogram

Given:
• Sequence of data elements A and sequence of bins B
• Function f(x) that assigns A’s elements into the bins B

• Histogram(A, B, f) = populates B with A’s elements
according to f

Pattern #6: Histogram
Example: image intensity values

https://www.youtube.com/watch?v=flI_Umo_VAU

Pattern #6: Histogram
Example: image intensity values

https://www.youtube.com/watch?v=flI_Umo_VAU

Pattern #6: Histogram
Example: Parallel Top-k

K=4

Zhang, Naruse, Li, and Wang. “Parallel Top-K Algorithms on GPU: A
Comprehensive Study and New Methods” SC '23

Pattern #6: Histogram
Example: Parallel Top-k

K=4

Zhang, Naruse, Li, and Wang. “Parallel Top-K Algorithms on GPU: A
Comprehensive Study and New Methods” SC '23

Pattern #6: Histogram
Example: Parallel Top-k

K=4

Zhang, Naruse, Li, and Wang. “Parallel Top-K Algorithms on GPU: A
Comprehensive Study and New Methods” SC '23

Pattern #6: Histogram
Example: Parallel Top-k

K=4

Zhang, Naruse, Li, and Wang. “Parallel Top-K Algorithms on GPU: A
Comprehensive Study and New Methods” SC '23

Pattern #6: Histogram
Example: Bucketing for load balance
• Sparse Matrix Vector Multiplication (SpMV)

Ashari, Sedaghati, Eisenlohr, Parthasarath and Sadayappan, "Fast Sparse
Matrix-Vector Multiplication on GPUs for Graph Applications," SC '14

Pattern #6: Histogram
Example: Bucketing for load balance
• Sparse Matrix Vector Multiplication (SpMV)

Ashari, Sedaghati, Eisenlohr, Parthasarath and Sadayappan, "Fast Sparse
Matrix-Vector Multiplication on GPUs for Graph Applications," SC '14

Pattern #6: Histogram
High-level algorithm sketch:

1. Partition the input into sections
2. Each compute unit iterates through its section
3. For each element in the section, the compute unit increments the

appropriate bin counter

Pattern #6: Histogram
Using atomics

Pattern #6: Histogram
Privatization

Pattern #6: Histogram
Coarsening

Pattern #6: Histogram
Aggregation
 Per thread private accumulator

Pattern #7: Merge
Given two sorted sequences A and B
• Generate another sorted sequence C that combines A and B

Pattern #7: Merge
ai = 0
bi = 0
ci = 0
if (A[ai] < B[bi])
 C[ci++] = A[ai++]
else
 C[ci++] = B[bi++]

Serial implementation is O(n)

ai bi

ci

Pattern #7: Merge
Naïve parallel implementation

1. For each item in A, binary search in B
2. For each item in B, binary search in A
3. 1. and 2. can be done concurrently

Complexity O(N logN)

Pattern #7: Merge
Merge Matrix:

if (A[i]>B[j])
 M[i,j]=1
else:
 M[i,j] =0

Pattern #7: Merge
Merge Path:

- Start at top-left
- Stop at bottom-right
if (A[i]>B[j])
 move right
else:
 move down

Pattern #7: Merge
Merge Path Properties:

• The merge path is the same as the output sequence.

Pattern #7: Merge
Merge Path Properties:

• The merge path is the same as the output sequence.

• Each segment of the merge bath is composed of a
contiguous sequence of elements of A and B

Pattern #7: Merge
Merge Path Properties:

• The merge path is the same as the output sequence.

• Each segment of the merge bath is composed of a
contiguous sequence of elements of A and B

• It is possible to partition the merge path into disjoint
sets

Pattern #7: Merge
Merge Path Properties:

• The merge path is the same as the output sequence.

• Each segment of the merge bath is composed of a
contiguous sequence of elements of A and B

• It is possible to partition the merge path into disjoint
sets

• For each segment, we know where to write it in
parallel.

size: 4

size: 3

size: 4

size: 5

Pattern #7: Merge
Merge Path Properties:

• The merge path is the same as the output sequence.

• Each segment of the merge bath is composed of a
contiguous sequence of elements of A and B

• It is possible to partition the merge path into disjoint
sets

• For each segment, we know where to write it in
parallel.

• Partitioning the merge path will lead to load balance.

Pattern #7: Merge
Cross diagonals:

Pattern #7: Merge
Cross diagonals:

• Entries along the cross
diagonals are monotonically
non-increasing

Pattern #7: Merge
Cross diagonals:

• Partitions the merge path equally

• Every processor (i.e., thread/block/grid) does a
constrained single binary search

• Can be done hierarchically

Saher Odeh, Oded Green ‡, Zahi Mwassi, Oz Shmueli, Yitzhak Birk
“Merge Path - Parallel Merging Made Simple”. IPDPS 2012

Reduction using Tensor Cores
Reduction as matrix multiplication

Dakkak, Li, Xiong, Gelado, and Hwu.
“Accelerating reduction and scan using tensor core units”. ICS '19

Reduction using Tensor Cores
Reduction as matrix multiplication

Dakkak, Li, Xiong, Gelado, and Hwu.
“Accelerating reduction and scan using tensor core units”. ICS '19

Reduction using Tensor Cores
Reduction as fused-multiply add (FMA)

Dakkak, Li, Xiong, Gelado, and Hwu.
“Accelerating reduction and scan using tensor core units”. ICS '19

Reduction using Tensor Cores
Reduction as fused-multiply add (FMA)

Dakkak, Li, Xiong, Gelado, and Hwu.
“Accelerating reduction and scan using tensor core units”. ICS '19

Data-Parallel Primitives in Thrust

https://nvidia.github.io/cccl/thrust/api_docs/algorithms.html

Data-Parallel Primitives in CUB

https://nvidia.github.io/cccl/cub/

Credits:

This lecture is primarily derived from:

• John Owens’s course on Modern Parallel Computing (EEC 289Q, UC Davis, Winter 2018)
• Kayvon Fatahalian‘s course on Parallel Computing (CS149, Stanford, Fall 2023)
• Programming Massively Parallel Processors - A Hands-on Approach book, 4th edition by

Wen-mei W. Hwu, David B. Kirk, and Izzat El Hajj, 2023

Questions?!

