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Lecture 9: Data-Parallel



Outline:
• Map
• Stencil 
• Reduce 
• Compaction 
• Scan 
• Segmented Scan

• Histogram 
• Merge 
• Reduction using tensor core!



Main idea: high-performance parallel 
implementations of data-parallel primitives 
exist, allowing programs written with these 
primitives to run efficiently on the GPU.



Pattern #4: Stream Compaction 

A B C D E F G H

A C D G

1 0 1 1 0 0 1 0

0 1 1 2 3 3 3 4

Input

Predicate Array

Exclusive scan

Scatter addresses
for true elements



Pattern #4.5: Split 

Predicate 0 1 1 0 0 0 1 0 1 0
0 1 2 3 4 5 6 7 8 9

input key index 

Destination
0 1 10 0 0 10 10
0 1 23 4 5 67 89

0 6 71 2 3 84 95

input key index 



Pattern #4.5: Split 

Predicate

0 0 1 2 2 2 2 3 3 4

0 1 1 0 0 0 1 0 1 0
0 1 2 3 4 5 6 7 8 9

Exclusive Scan

input key index 

Destination
0 1 10 0 0 10 10
0 1 23 4 5 67 89

0 6 71 2 3 84 95

input key index 

#ones



Pattern #4.5: Split

Predicate

0 0 1 2 2 2 2 3 3 4

0 1 1 0 0 0 1 0 1 0
0 1 2 3 4 5 6 7 8 9

Exclusive Scan

input key index 

Destination of a one = 
    total #zeros + #one before

Destination
0 1 10 0 0 10 10
0 1 23 4 5 67 89

0 6 71 2 3 84 95

input key index 



Pattern #4.5: Split

Predicate

0 0 1 2 2 2 2 3 3 4

0 1 1 0 0 0 1 0 1 0
0 1 2 3 4 5 6 7 8 9

Exclusive Scan

input key index 

Destination
0 1 10 0 0 10 10
0 1 23 4 5 67 89

0 6 71 2 3 84 95

input key index 

Destination of a one = 
    total #zeros + #one before

Destination of a zero = 
    key index - #ones before



Load-balance Search 

[A  B  C   D   E   F ]  Alphabet (#size 6)

[2   1   0    0    7   3       ] Count 

https://moderngpu.github.io/intro.html

“Coordinates work-items with the objects that scheduled them, allowing perfect load-balancing for functions that 
expand and contract data”
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Load-balance Search 

[A  B  C   D   E   F ]  Alphabet (#size 6)

[2   1   0    0    7   3       ] Count 

 

 

 

[0 0 1 4 4 4 4 4 4 4 5 5 5]

[A A B E E E E E E E F F F] Output
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Load-balance Search 

[A  B  C   D   E   F ]  Alphabet (#size 6)

[2   1   0    0    7   3       ] Count 

[0   2   3    3    3  10  13] Count Scanned
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Load-balance Search 

[A  B  C   D   E   F ]  Alphabet (#size 6)

[2   1   0    0    7   3       ] Count 

[0   2   3    3    3  10  13] Count Scanned

[0 0 0 0 0 0 0 0 0 0 0 0 0] init with zero 
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Load-balance Search 

[A  B  C   D   E   F ]  Alphabet (#size 6)

[2   1   0    0    7   3       ] Count 

[0   2   3    3    3  10  13] Count Scanned

[0 0 0 0 0 0 0 0 0 0 0 0 0] init with zero 

[0 0 1 4 0 0 0 0 0 0 5 0 0] Scatter Alphabet index based on Count Scanned if Count != zero

[0 0 1 4 4 4 4 4 4 4 5 5 5]

[A A B E E E E E E E F F F] Output

https://moderngpu.github.io/intro.html

“Coordinates work-items with the objects that scheduled them, allowing perfect load-balancing for functions that 
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Load-balance Search 

[A  B  C   D   E   F ]  Alphabet (#size 6)

[2   1   0    0    7   3       ] Count 

[0   2   3    3    3  10  13] Count Scanned

[0 0 0 0 0 0 0 0 0 0 0 0 0] init with zero 

[0 0 1 4 0 0 0 0 0 0 5 0 0] Scatter Alphabet index based on Count Scanned if Count != zero

[0 0 1 4 4 4 4 4 4 4 5 5 5] Scan with max() operator 

[A A B E E E E E E E F F F] Output

https://moderngpu.github.io/intro.html

“Coordinates work-items with the objects that scheduled them, allowing perfect load-balancing for functions that 
expand and contract data”



Pattern #5.5: Segmented Scan
• Simultaneously performs scans on arbitrary contiguous 

partitions of input sequences 

• Example for when ⊕ is addition

3 1 7 0 4 1 6 3

3 4 11 0 4 5 6 9

Input

Inclusive
Segmented 

Scan



Pattern #5.5: Segmented Scan
• Simultaneously performs scans on arbitrary contiguous 

partitions of input sequences 

• Same computational complexity as scan, but additionally must 
keep track of segments using head flags

3 1 7 0 4 1 6 3

3 4 11 0 4 5 6 9

Input

Inclusive Segmented Scan

1 0 0 1 0 0 1 0Head flag



Pattern #5.5: Segmented Scan



Pattern #5.5: Segmented Scan
• Used in operating on sequence of variable-length sequences 

1. For each vertex in a graph:
• For each edge incoming to the vertex 

2. For each particle in simulation:
• For each particle within a cutoff radius 

3. For each document in a collection 
• For each word in the document 



Pattern #5.5: Segmented Scan
• Used in operating on sequence of variable-length sequences 

1. For each vertex in a graph:
• For each edge incoming to the vertex 

2. For each particle in simulation:
• For each particle within a cutoff radius 

3. For each document in a collection 
• For each word in the document 

•  Two levels of parallelism to exploit but it’s irregular: 
1. The size of edge lists
2. Particle neighbor list
3. Words per document



Pattern #5.5: Segmented Scan
Quicksort

1. Pick a pivot
2. Partition remaining elements into two sub-arrays
• Elements ≤ pivot
• Elements > pivot 

3. Repeat for each sub-array until sorted



Pattern #5.5: Segmented Scan
Quicksort

[3 1  4  2  6          9            8           9 ] Input 

Blelloch "Prefix sums and their applications." (1990).

previous pivot



Pattern #5.5: Segmented Scan
Quicksort

[3 1  4  2  X          9            8           9 ] Input 

Blelloch "Prefix sums and their applications." (1990).



Pattern #5.5: Segmented Scan
Quicksort

[3 1  4  2  X          9            8           9 ] Input 
[1         0          0           0          X          1            0           0 ] Flags

Blelloch "Prefix sums and their applications." (1990).



Pattern #5.5: Segmented Scan
Quicksort

[3 1  4  2  X          9            8           9 ] Input 
[1         0          0           0          X          1            0           0 ] Flags
[3         0          0           0          X          9            0           0 ] Heads write pivot

Blelloch "Prefix sums and their applications." (1990).



Pattern #5.5: Segmented Scan
Quicksort

[3 1  4  2  X          9            8           9 ] Input 
[1         0          0           0          X          1            0           0 ] Flags
[3         0          0           0          X          9            0           0 ] Heads write pivot
[3         3          3           3          X          9            9           9 ] Pivot (max-scan)

Blelloch "Prefix sums and their applications." (1990).



Pattern #5.5: Segmented Scan
Quicksort

[3 1  4  2  X          9            8           9 ] Input 
[1         0          0           0          X          1            0           0 ] Flags
[3         0          0           0          X          9            0           0 ] Heads write pivot
[3         3          3           3          X          9            9           9 ] Pivot (max-scan)
[=         <          >           <          X          =            <           = ] Compare

Blelloch "Prefix sums and their applications." (1990).



Pattern #5.5: Segmented Scan
Quicksort

[3 1  4  2  X          9            8           9 ] Input 
[1         0          0           0          X          1            0           0 ] Flags
[3         0          0           0          X          9            0           0 ] Heads write pivot
[3         3          3           3          X          9            9           9 ] Pivot (max-scan)
[=         <          >           <          X          =            <           = ] Compare

[1         2          3           4          X          8            9           9 ] 2-way Seg Split
                                                                                                                             (req: segmented scan)

Blelloch "Prefix sums and their applications." (1990).



Pattern #6: Histogram 

Given: 
• Sequence of data elements A and sequence of bins B
• Function f(x) that assigns A’s elements into the bins B

•  Histogram(A, B, f) = populates B with A’s elements 
according to f



Pattern #6: Histogram 
Example: image intensity values

https://www.youtube.com/watch?v=flI_Umo_VAU



Pattern #6: Histogram 
Example: image intensity values

https://www.youtube.com/watch?v=flI_Umo_VAU



Pattern #6: Histogram 
Example: Parallel Top-k

K=4

Zhang, Naruse, Li, and Wang. “Parallel Top-K Algorithms on GPU: A 
Comprehensive Study and New Methods”  SC '23
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Pattern #6: Histogram 
Example: Parallel Top-k

K=4

Zhang, Naruse, Li, and Wang. “Parallel Top-K Algorithms on GPU: A 
Comprehensive Study and New Methods”  SC '23



Pattern #6: Histogram 
Example: Bucketing for load balance 
• Sparse Matrix Vector Multiplication (SpMV)

Ashari, Sedaghati, Eisenlohr, Parthasarath and Sadayappan, "Fast Sparse 
Matrix-Vector Multiplication on GPUs for Graph Applications," SC '14



Pattern #6: Histogram 
Example: Bucketing for load balance 
• Sparse Matrix Vector Multiplication (SpMV)

Ashari, Sedaghati, Eisenlohr, Parthasarath and Sadayappan, "Fast Sparse 
Matrix-Vector Multiplication on GPUs for Graph Applications," SC '14



Pattern #6: Histogram 
High-level algorithm sketch:

1. Partition the input into sections 
2. Each compute unit iterates through its section 
3. For each element in the section, the compute unit increments the 

appropriate bin counter 



Pattern #6: Histogram 
Using atomics 



Pattern #6: Histogram 
Privatization 



Pattern #6: Histogram 
Coarsening 



Pattern #6: Histogram 
Aggregation
 Per thread private accumulator
 



Pattern #7: Merge 
Given two sorted sequences A and B 
• Generate another sorted sequence C that combines A and B 



Pattern #7: Merge 
ai = 0
bi = 0
ci = 0
if (A[ai] < B[bi])
   C[ci++] = A[ai++]
else 
   C[ci++] = B[bi++]

Serial implementation is O(n)

ai bi

ci



Pattern #7: Merge 
Naïve parallel implementation 

1. For each item in A, binary search in B
2. For each item in B, binary search in A
3. 1. and 2. can be done concurrently 

Complexity O(N logN)



Pattern #7: Merge 
Merge Matrix:

if (A[i]>B[j]) 
     M[i,j]=1
else:
     M[i,j] =0



Pattern #7: Merge 
Merge Path:

- Start at top-left 
- Stop at bottom-right 
if (A[i]>B[j]) 
     move right
else:
     move down 



Pattern #7: Merge 
Merge Path Properties:

• The merge path is the same as the output sequence.
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Pattern #7: Merge 
Merge Path Properties:

• The merge path is the same as the output sequence.

• Each segment of the merge bath is composed of a 
contiguous sequence of elements of A and B 

• It is possible to partition the merge path into disjoint 
sets 

• For each segment, we know where to write it in 
parallel. 

 

size: 4

size: 3

size: 4

size: 5



Pattern #7: Merge 
Merge Path Properties:

• The merge path is the same as the output sequence.

• Each segment of the merge bath is composed of a 
contiguous sequence of elements of A and B 

• It is possible to partition the merge path into disjoint 
sets 

• For each segment, we know where to write it in 
parallel. 

• Partitioning the merge path will lead to load balance. 



Pattern #7: Merge 
Cross diagonals:

 



Pattern #7: Merge 
Cross diagonals:

• Entries along the cross 
diagonals are monotonically 
non-increasing 

 



Pattern #7: Merge 
Cross diagonals:

• Partitions the merge path equally 

• Every processor (i.e., thread/block/grid) does a 
constrained single binary search

• Can be done hierarchically 

Saher Odeh, Oded Green ‡, Zahi Mwassi, Oz Shmueli, Yitzhak Birk
“Merge Path - Parallel Merging Made Simple”. IPDPS 2012



Reduction using Tensor Cores
Reduction as matrix multiplication 

Dakkak, Li, Xiong, Gelado, and Hwu. 
“Accelerating reduction and scan using tensor core units”. ICS '19
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Reduction using Tensor Cores
Reduction as fused-multiply add (FMA)

Dakkak, Li, Xiong, Gelado, and Hwu. 
“Accelerating reduction and scan using tensor core units”. ICS '19



Data-Parallel Primitives in Thrust 

https://nvidia.github.io/cccl/thrust/api_docs/algorithms.html



Data-Parallel Primitives in CUB 

https://nvidia.github.io/cccl/cub/



Credits: 

This lecture is primarily derived from:

• John Owens’s course on Modern Parallel Computing (EEC 289Q, UC Davis, Winter 2018)
• Kayvon Fatahalian‘s course on Parallel Computing (CS149, Stanford, Fall 2023)
• Programming Massively Parallel Processors - A Hands-on Approach book, 4th edition by 

Wen-mei W. Hwu, David B. Kirk, and Izzat El Hajj, 2023



Questions?!


