October 30, 2025

6.5894
Accelerated Computing

Lecture 9: Data-Parallel
Primitives
Ahmed Mahmoud Iir

Outline:

* Scan
* Segmented Scan

* Histogram
* Merge
* Reduction using tensor core!

Main idea: high-performance parallel
implementations of

exist, allowing programs written with these
primitives to run on the GPU.

Pattern #4: Stream Compaction

Input

Predicate Array

Exclusive scan

Scatter addresses
for true elements

AlB|lcC|D
1 1o 1 |1
o |11]2
.
Alc|D|G

Pattern #4.5: Split

Predicate

Destination

<

11/// L
/////

input key index

input key index

Pattern #4.5: Split

«— nput key index

Predicate 0 1 1 0 0 0 1 0 1 0

#ones

Exclusive Scan 0 0 1 2121212131314 ‘(

«— [nput key index

Destination

Pattern #4.5: Split

<

Predicate O 1 1

Exclusive Scan 0 0 1

Destination

input key index

Destination of a one =
total #zeros + #one before

input key index

Pattern #4.5: Split

Predicate

Exclusive Scan

Destination

«— nput key index

0

Destination of a one =

total #zeros + #one before

0

1

2

2

2

2

3

3

4

Destination of a zero =
key index - #ones before

0

0

0

0

0

1

1

1

1

6

7

8

9

Load-balance Search

“Coordinates work-items with the objects that scheduled them, allowing perfect load-balancing for functions that
expand and contract data”

B E F] Alphabet (#size 6)

1 7 3]Count

Load-balance Search

“Coordinates work-items with the objects that scheduled them, allowing perfect load-balancing for functions that
expand and contract data”

[A B E F] Alphabet (#size 6)

[2 1 7 3]Count

[BEEEEEEEFF F] Output

Load-balance Search

“Coordinates work-items with the objects that scheduled them, allowing perfect load-balancing for functions that
expand and contract data”

B E F] Alphabet (#size 6)
1 7 3]Count
14444444555]

BEEEEEEEFF F] Output

Load-balance Search

“Coordinates work-items with the objects that scheduled them, allowing perfect load-balancing for functions that
expand and contract data”

B E F] Alphabet (#size 6)
1 7 3]Count

2 3 10 13] Count Scanned
14444444555]

BEEEEEEEFF F] Output

Load-balance Search

“Coordinates work-items with the objects that scheduled them, allowing perfect load-balancing for functions that
expand and contract data”

B E F] Alphabet (#size 6)
1 7 3]Count
2 3 10 13] Count Scanned

0000000000 0] init with zero

14444444555]

BEEEEEEEFF F] Output

Load-balance Search

“Coordinates work-items with the objects that scheduled them, allowing perfect load-balancing for functions that
expand and contract data”

B E F] Alphabet (#size 6)
1 7 3]Count
2 3 10 13] Count Scanned

0000000000 0] init with zero
1400000050 0] Scatter Alphabet index based on Count Scanned if Count != zero
14444444555]

BEEEEEEEFF F] Output

Load-balance Search

“Coordinates work-items with the objects that scheduled them, allowing perfect load-balancing for functions that
expand and contract data”

B E F] Alphabet (#size 6)
1 7 3]Count
2 3 10 13] Count Scanned

0000000000 0] init with zero
1400000050 0] Scatter Alphabet index based on Count Scanned if Count != zero
1444444455 5] Scan with max() operator

BEEEEEEEFF F] Output

Pattern #5.5: Segmented Scan

* Simultaneously performs scans on arbitrary contiguous
partitions of input sequences

* Example for when @ is addition

Pattern #5.5: Segmented Scan

 Simultaneously performs scans on arbitrary contiguous
partitions of input sequences

* Same computational complexity as scan, but additionally must
keep track of segments using head flags

3117 |0]4|1]6]3
oo 1 o
3

4 (1110 (4 |D5 |6 |9

Pattern #5.5: Segmented Scan

Up-sweep:
for d=0 to (logzn - 1) do:
forall k=0 to n-1 by 2d4+1 do:
if flag[k + 2041 - 1] == 0: ==
data[k + 24+1 - 1] = data[k + 29 - 1] + data[k + 29+1 - 1]
flag[k + 29+1 - 1] = flag[k + 29 - 1] Il flag[k + 29+1 - 1] <=

Down-sweep:

data[n-1]1=0
for d=(logzn - 1) down to 0 do:
forall k=0 to n-1 by 29+1 do:
tmp = data[k + 29 - 1]
data[k + 29 - 1] = data[k + 2d+1 - 1]
if flag_original[k + 29] == 1: <@=# must maintain copy of original flags
datalk + 2d+1-1] =0 # start of segment
else if flag[k + 24- 1] == 1:
datalk + 29+1 - 1] = tmp
else:
data[k + 29+1 - 1] = tmp + data[k + 2d9+1 - 1]

flag[k + 24 - 1] = 0 ==

Pattern #5.5: Segmented Scan

* Used in operating on sequence of sequences

1. For each vertex in a graph:
 For each edge incoming to the vertex

2. For each particle in simulation:

* For each particle within a cutotf radius O

3. For each document in a collection
 For each word in the document

Pattern #5.5: Segmented Scan

* Used in operating on sequence of sequences

1. For each vertex in a graph:
 For each edge incoming to the vertex

2. For each particle in simulation:
* For each particle within a cutotf radius

3. For each document in a collection
 For each word in the document

* Two levels of parallelism to exploit but it’s irreqular:

1. The size of edge lists
2. Particle neighbor list
3. Words per document

Pattern #5.5: Segmented Scan
Quicksort

1. Pick a pivot

2. Partition remaining elements into two sub-arrays
 Elements < pivot
 Elements > pivot

3. Repeat for each sub-array until sorted

Pattern #5.5: Segmented Scan
Quicksort

previous pioot

[6] Input

Pattern #5.5: Segmented Scan
Quicksort

[X | Input

Pattern #5.5: Segmented Scan
Quicksort

[
[

<

| Input

<

] Flags

Pattern #5.5: Segmented Scan

Quicksort
X | Input
X] Flags
X] Heads write pivot

Pattern #5.5: Segmented Scan
Quicksort
| Input
] Flags
] Heads write pivot

X X X X

| Pivot (max-scan)

Pattern #5.5: Segmented Scan

Quicksort

| Input

] Flags

] Heads write pivot
| Pivot (max-scan)

X X X X X

| Compare

Pattern #5.5: Segmented Scan

Quicksort

| Input

] Flags

] Heads write pivot
| Pivot (max-scan)

X X X X X

| Compare

<

] 2-way Seg Split

(req: segmented scan)

Pattern #6: Histogram

Given:
* Sequence of data elements A and sequence of bins
* Function that assigns A’s elements into the bins

. A = populates I’ with A’s elements
according to

Pattern #6: Histogram

Example: image intensity values

0 0
0

Pattern #6: Histogram

Example: image intensity values

Original Contrast decreased

|

https://www.youtube.com/watch?v=fll_Umo_VAU

Pattern #6: Histogram

Example: Parallel Top-k

1100 0100 0001 1000 0110 0101 1101 0000 1110

Value 12 4 1 8 6 5 13 0 14
Input
Index 0 1 2 3 4 5 6 7 8

Pattern #6: Histogram

Example: Parallel Top-k

1100 0100 0001 1000 0110 0101 1101 0000 1110

Value 12 4 1 8 6 5 13 0 14
Input
Index 0 1 2 3 4 5 6 7 8

Histogram 2 3 1 3

Compute Histogram

Pattern #6: Histogram

Example: Parallel Top-k

1100 0100 0001 1000 0110 0101 1101 0000 1110

Value 12 4 1 8 6 5 13 0 14
Input
Index 0 1 2 3 4 5 6 7 8

Histogram 2 3 1 3

Compute Histogram

Compute inclusive prefix sum Prefix sum 2 5 6 9

Pattern #6: Histogram

Example: Parallel Top-k

1100 0100 0001 1000 0110 0101 1101 0000 1110

Value 12 4 1 8 6 5 13 0 14
Input

Index O 1 2 3 4 5 6 7 8
Compute Histogram Histogram 2 3 1 3

Compute inclusive prefix sum

Find the target digit | ..., comrn AN
Filtering Value 1 0 | Value 4 6 5
Top-K Candidates
Index 2 7 Index 1 4 5

Pattern #6: Histogram

Example: Bucketing for load balance
 Sparse Matrix Vector Multiplication (SpMV)

Y0 | 301--0(] xo
Vi 020 0] x:
y2[=]1 004 0] xz

y,;z-z 0 26 8 | [Xn-1

values =[[3,1], [2], [4], ..., [2,6,8]]
cols =[[0,2], [1], [2], -...,]
row_starts =[O0, 2, 3, 4, ...]

Pattern #6: Histogram

Example: Bucketing for load balance

 Sparse Matrix Vector Multiplication (SpMV)

-~

T = 4 SpMV
B /4}<<< BIN1 >>>
NPT SpMV

8 \/\/ <<< BIN2 >>>
s «*’}

© Y spmv

<<< BIN3 >>>

yol [301 0]fxo
Vi 020 01] x:
2= 004 0]|xz
y,:z-z 0 26 8 | [Xn-1

values =[[3,1], [2], [4], ..., [2,6,8]]
cols =[[0,2], [1], [2], -...,]
row_starts =[O0, 2, 3, 4, ...]

Pattern #6: Histogram

High-level algorithm sketch:

1. Partition the input into sections
2. Each compute unit iterates through its section

3. For each element in the section, the compute unit increments the
appropriate bin counter

Pattern #6: Histogram

Pattern #6: Histogram

Privatization
B EB RO EQY Era B2 im Pt EL ERE BR mi & ES BsH Bl iV e BN kY p a
ad eh i1 m-p gt uxyz ad eh i1 mp gt ux yz a-q »e-hf M mp gt ux yz

histo

a-d e-h i-1 m-p g-t u-X y-2

Pattern #6: Histogram

Coarsening
pi Erd kol Pl Evd Fal im)l fml B Enil P my Gad s EsH i Evd el BN By p a
First iteration 2 2 2 2 § 2 2 2

ol B fO1 ERl Erd Fal i il Bl Enl E) m fall Esy E5) BIE RVE keR RIS &Y p a

659443

Pattern #6: Histogram

Aggregation
Per thread private accumulator

e §8880888

proeramming malsve vy paliE

6594945

Pattern #7: Merge

Given two sorted sequences A and B
* Generate another sorted sequence C that combines A and B

Pattern #7: Merge
al=0
Serial implementation is O(n) b_i =8

Cl =

if (Alai] < B[bi])
[ci++] = Alai++]

else
[ci++] = B[bi++]

e B

al bi

Lalelsfefslel [[[T 1T [[[[|
/

ci

Pattern #7: Merge

Naive parallel implementation

1. For each item in A, binary search in B
2. For each item in B, binary search in A
3. 1.and 2. can be done concurrently

Complexity O(N logN)

Pattern #7: Merge

Merge Matrix:

if (A[i]>BIjl)
M[i,j]=1
else:
M[i,j] =0

Pattern #7: Merge

Merge Path:

- Start at top-left
- Stop at bottom-right
if (A[i]>Bj])
move right
else:
move down

Pattern #7: Merge

Merge Path Properties:

* The merge path is the same as the output sequence.

Pattern #7: Merge

Merge Path Properties:

* The merge path is the same as the output sequence.

« Each segment of the merge bath is composed of a
contiguous sequence of elements of A and B

Pattern #7: Merge

Merge Path Properties:

* The merge path is the same as the output sequence.

* Each segment of the merge bath is composed of a
contiguous sequence of elements of A and B

* Itis possible to partition the merge path into disjoint
sets

Pattern #7: Merge

Merge Path Properties:

* The merge path is the same as the output sequence.

* Each segment of the merge bath is composed of a A

contiguous sequence of elements of A and B size: 3

* Itis possible to partition the merge path into disjoint
sets

size: 5

 For each segment, we know where to write it in
parallel.

Pattern #7: Merge

Merge Path Properties:

The merge path is the same as the output sequence.

* Each segment of the merge bath is composed of a
contiguous sequence of elements of A and B

* Itis possible to partition the merge path into disjoint
sets

 For each segment, we know where to write it in
parallel.

* Partitioning the merge path will lead to load balance.

Pattern #7: Merge

Cross diagonals:

Pattern #7: Merge

Cross diagonals:

Y

 Entries along the cross
diagonals are monotonically
non-increasing

..::::::::5" -l

" d

AN

R

Pattern #7: Merge

Cross diagonals:

* Partitions the merge path equally

» Every processor (i.e., thread/block/grid) does a
constrained single binary search

 Can be done hierarchically

Saher Odeh, Oded Green 1, Zahi Mwassi, Oz Shmueli, Yitzhak Birk
“Merge Path - Parallel Merging Made Simple”. IPDPS 2012

ol o] ©

S ©o| ©| ©

o

Lary

|l o || OCFgO | OS] O] O] S

Reduction using Tensor Cores

Reduction as matrix multiplication

Reduction using Tensor Cores

Reduction as matrix multiplication

Reduction [al ,a, ..., an] =

/11
0 0

L0 0

H

0

(al 0
a9 0

y

\a, 0

)

Reduction using Tensor Cores

Reduction as fused-multiply add (FMA)

%

A

Reduction using Tensor Cores

Reduction as fused-multiply add (FMA)

Data-Parallel Primitives in Thrust

Algorlth mS > Reductions > Transformations > Sorting

> Prefix sums

thrust::.generate_n

> Comparisons > Filling
. . > thrust:sort
> Copying > Counting > Segmented Prefix Sums > Modifying
> Gath > Extrema > Transformed Prefix Sums > Replacing > thrust:sort_by_key
ather B .
> Scatter > Logical > thrust:inclusive_scan > thrust:sequence > thrust:stable_sort
> Predicates > thrust:exclusive_scan rustadjacent diference > thrust:stable_sort_by_key
> thrust:swap_ranges - - > thrust:tabulate > thrust:sort_by_key
> thrust:copy > Transformed Reductions > thrust::exclusive_scan > thrust:adjacent_difference - t" : bI - t
)) rust::stable_sor
> thrust:swap_ranges > thrust:reduce_by_key > thrust:inclusive_scan > thrust:sequence) o .
. ; > thrust:stable_sort E
> thrust:copy_n > thrust:reduce_by_key > thrust=inclusive scan > thrust-transform_if —Sort_by_xey
o - > thrust:transform_if > thrust:sort_by_ke
> thrust:uninitialized_copy > thrust:reduce > thrust:inclusive scan B —Oy_Key
> thrust:co .) - > thrust:sequence > thrust:stable_sort
~copy > thrust:reduce_by_key > thrust:exclusive_scan > thrust:transform > thrust-stable sort
> thrust::copy_n - . . - —
F.Dy._. | > thrust:reduce_by_key > thrust:exclusive scan > thrust:transform > thrust:eort
> thrust:uninitialized_copy_n > thrust:reduce > thrust-exclusive scan > thrust:generate_n -
> thrust:uninitialized_copy_n s thrust-reduce o > thrust:transform_if > thrust:sort
> thrust:uninitialized_copy s thrust-reduce > thrust:inclusive_scan > thrust:sequence > thrust:sort_by_key
- > thrust:inclusive_scan > thrust:transform_if > thrust:stable_sort_by key
> Mergin > thrust:reduce_by_ke . - - T T
ging —Oy_Key > thrust:exclusive_scan > thrust:generate > thrust-sort
> thrust-merge by ke > thrust:reduce_by_key > thrust:transform_if)
merge_by_key > thrust-reduce > thrust-transform_if > thrust:stable_sort_by_key
> thrust:merge > thrust-reduce > thrust:tabulate
> thrust:merge - > thrust:transform
> thrust:merge_by_key > Reordering > thrust:transform
> thrust:merge_by_key > thrust:adjacent_difference
> thrust:merge > Partitioning > thrust:generate
> thrust:merge > Shufﬂing > thrust:sequence
) > thrust:adjacent_difference
> thrust:merge_by_key > Stream Compactation N
>

thrust::sequence

https://nvidia.github.io/cccl/thrust/api_docs/algorithms.html

Data-Parallel Primitives in CUB

> Parallel primitives
> Warp-wide “collective” primitives
> Cooperative warp-wide prefix scan, reduction, etc.
> Safely specialized for each underlying CUDA architecture
> Block-wide “collective” primitives
> Cooperative |/0, sort, scan, reduction, histogram, etc.
> Compatible with arbitrary thread block sizes and types
> Device-wide primitives

> Parallel sort, prefix scan, reduction, histogram, etc.

> Compatible with CUDA dynamic parallelism

https://nvidia.github.io/cccl/cub/

Credits:

This lecture is primarily derived from:

* John Owens’s course on Modern Parallel Computing (EEC 289Q), UC Davis, Winter 2018)

« Kayvon Fatahalian’s course on Parallel Computing (CS149, Stanford, Fall 2023)

 Programming Massively Parallel Processors - A Hands-on Approach book, 4t edition by
Wen-mei W. Hwu, David B. Kirk, and Izzat El Hajj, 2023

Questions?!

